We present an analytical model for Ferro PZT Al2O3/AlGaN/AlN/GaN MOSHEMT involving the solution of Poisson and Schrödinger equations. This analytical model covers most of the operating regimes of the Ferro PZT MOSHEMT. The two-dimensional electron gas (2-DEG) sheet charge density (ns), threshold voltage (Vth), drain current (Ids), gate capacitance (Cgs and Cgd), and unit gain cutoff frequency(fT) model equations are presented and simulated with MATLAB tool. It is observed that the insertion of the Ferro Pb(Zr, Ti)O3 PZT (lead zirconium titanate) material can improve the device’s performance. The proposed Ferro PZT MOSHEMT model accurately predicts a higher drain current of 1.14 A/mm, a high transconductance of 362 S/mm, a gate-to-source capacitance of 50.99 pF, a gate-to-drain capacitance of 38.25 pF, and high cutoff frequency of 0.033 THz for 20 nm AlGaN barrier layer. The results show good agreement with the TCAD-Atlas simulation and are satisfactory for the different AlGaN barrier layer thicknesses. The generated model and simulation results show the potential of using the Ferro PZT MOSHEMT for high-power and RF/Microwave applications.