Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the TSP

被引:0
作者
Matthias Englert
Heiko Röglin
Berthold Vöcking
机构
[1] University of Warwick,DIMAP and Dept. of Computer Science
[2] University of Bonn,Dept. of Computer Science
[3] RWTH Aachen University,Dept. of Computer Science
来源
Algorithmica | 2014年 / 68卷
关键词
TSP; 2-Opt; Probabilistic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
2-Opt is probably the most basic local search heuristic for the TSP. This heuristic achieves amazingly good results on “real world” Euclidean instances both with respect to running time and approximation ratio. There are numerous experimental studies on the performance of 2-Opt. However, the theoretical knowledge about this heuristic is still very limited. Not even its worst case running time on 2-dimensional Euclidean instances was known so far. We clarify this issue by presenting, for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\in\mathbb{N}$\end{document}, a family of Lp instances on which 2-Opt can take an exponential number of steps.
引用
收藏
页码:190 / 264
页数:74
相关论文
共 18 条
[1]  
Arora S.(1998)Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems J. ACM 45 753-782
[2]  
Chandra B.(1999)New results on the old k-Opt algorithm for the traveling salesman problem SIAM J. Comput. 28 1998-2029
[3]  
Karloff H.J.(1998)Balls and bins: a study in negative dependence Random Struct. Algorithms 13 99-124
[4]  
Tovey C.A.(1989)A probabilistic analysis of the switching algorithm for the Euclidean TSP Math. Program. 44 213-219
[5]  
Dubhashi D.P.(1973)An effective heuristic for the traveling salesman problem Oper. Res. 21 489-516
[6]  
Ranjan D.(1999)Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems SIAM J. Comput. 28 1298-1309
[7]  
Kern W.(1977)The Euclidean traveling salesman problem is NP-complete Theor. Comput. Sci. 4 237-244
[8]  
Lin S.(1992)The complexity of the Lin-Kernighan heuristic for the traveling salesman problem SIAM J. Comput. 21 450-465
[9]  
Kernighan B.W.(1991)TSPLIB—a traveling salesman problem library ORSA J. Comput. 3 376-384
[10]  
Mitchell J.S.B.(1977)An analysis of several heuristics for the traveling salesman problem SIAM J. Comput. 6 563-581