Deterministic Control of SDEs with Stochastic Drift and Multiplicative Noise: A Variational Approach

被引:0
|
作者
Giacomo Ascione
Giuseppe D’Onofrio
机构
[1] Scuola Superiore Meridionale,Dipartimento di Scienze Matematiche
[2] Politecnico di Torino,undefined
来源
Applied Mathematics & Optimization | 2023年 / 88卷
关键词
Stochastic differential equation; Euler–Lagrange equation; Geometric Brownian motion; 49J55; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a linear stochastic differential equation with stochastic drift and multiplicative noise. We study the problem of approximating its solution with the process that solves the equation where the possibly stochastic drift is replaced by a deterministic function. To do this, we use a combination of deterministic Pontryagin’s maximum principle approach and direct methods of calculus of variations. We find necessary and sufficient conditions for a function u∈L1(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in L^1(0, T)$$\end{document} to be a minimizer of a certain cost functional. To overcome the problem of the existence of such minimizer, we also consider suitable families of penalized coercive cost functionals. Finally, we consider the important example of the quadratic cost functional, showing that the expected value of the drift component is not always the best choice in the mean squared error approximation.
引用
收藏
相关论文
共 23 条
  • [1] Deterministic Control of SDEs with Stochastic Drift and Multiplicative Noise: A Variational Approach
    Ascione, Giacomo
    D'Onofrio, Giuseppe
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [2] A new class of exponential integrators for SDEs with multiplicative noise
    Erdogan, Utku
    Lord, Gabriel J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (02) : 820 - 846
  • [3] Approximation of stationary solutions to SDEs driven by multiplicative fractional noise
    Cohen, Serge
    Panloup, Fabien
    Tindel, Samy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (03) : 1197 - 1225
  • [4] Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
    Khlifa, Meriem Bel Hadj
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Zili, Mounir
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (04): : 269 - 285
  • [5] Drift reduction method for SDEs driven by heterogeneous singular Lévy noise
    Kulczycki, Tadeusz
    Kulyk, Oleksii
    Ryznar, Michal
    BERNOULLI, 2024, 30 (04) : 3089 - 3118
  • [6] Stochastic stabilization and destabilization of ship maneuvering motion by multiplicative noise
    Maki, Atsuo
    Hoshino, Kenta
    Dostal, Leo
    Maruyama, Yuuki
    Hane, Fuyuki
    Yoshimura, Yasuo
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2023, 28 (03) : 704 - 718
  • [7] Stochastic stabilization and destabilization of ship maneuvering motion by multiplicative noise
    Atsuo Maki
    Kenta Hoshino
    Leo Dostal
    Yuuki Maruyama
    Fuyuki Hane
    Yasuo Yoshimura
    Journal of Marine Science and Technology, 2023, 28 : 704 - 718
  • [8] A STABLE NUMERICAL SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE
    Mora, C. M.
    Mardones, H. A.
    Jimenez, J. C.
    Selva, M.
    Biscay, R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1614 - 1649
  • [9] INVARIANT FOLIATIONS FOR STOCHASTIC DYNAMICAL SYSTEMS WITH MULTIPLICATIVE STABLE LEVY NOISE
    Chao, Ying
    Wei, Pingyuan
    Yuan, Shenglan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [10] A weak Local Linearization scheme for stochastic differential equations with multiplicative noise
    Jimenez, J. C.
    Mora, C.
    Selva, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 202 - 217