On the Global Integrability of Non-Negative Harmonic Functions

被引:0
作者
Khalifa El Mabrouk
机构
[1] Universität Bielefeld,Fakultät für Mathematik
来源
Potential Analysis | 2005年 / 22卷
关键词
-harmonic Bauer spaces; reference measures; integral representation of non-negative harmonic functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let ℋ+(D) be the set of all non-negative harmonic functions on a domain D⊂Rd. Let q>0 and define Lq(D) to be the set of all Borel functions f such that |f|q is Lebesgue-integrable on D. Let x0∈D. N. Suzuki established the following: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}^{+}(D)\subset L^{q}(D)\Leftrightarrow \sup\biggl\{\int_{D}h^{q}(x)\,\mathrm{d}x:h\in\mathcal{H}^{+}(D),h(x_{0})=1\biggr\}<\infty.$$\end{document}
引用
收藏
页码:171 / 181
页数:10
相关论文
共 15 条
[1]  
Armitage D.H.(1971)On the global integrability of superharmonic functions in balls J. London Math. Soc. (2) 4 365-373
[2]  
Dynkin E.B.(1996)Solutions of L J. Anal. Math. 68 15-37
[3]  
Kuznetsov S.E.(2002)= Adv. Differential Equations 7 1377-1408
[4]  
El Mabrouk K.(2003) dominated by L-harmonic functions Potential Anal. 19 35-50
[5]  
El Mabrouk K.(1936)Semilinear perturbations of harmonic spaces and Martin–Orlicz capacities: An approach to the trace of moderate Izv. Nauchno-Issled. Inst. Mat. Khar’kov Univ. Ser. 4 13 35-40
[6]  
Gelfand I.M.(1991) -functions Duke Math. J. 64 271-324
[7]  
Gmira A.(1989)Semilinear perturbations of harmonic spaces, Liouville property and a boundary value problem Bull. London Math. Soc. 21 270-278
[8]  
Véron L.(1998)Sur un lemme de la théorie des espaces linéaires J. Math. Pures Appl. (9) 77 481-524
[9]  
Maeda F.Y.(2001)Boundary singularities of solutions of some nonlinear elliptic equations J. Math. Pures Appl. (9) 80 879-900
[10]  
Suzuki N.(1993)The integrability of superharmonic functions on Lipschitz domains Proc. Amer. Math. Soc. 118 415-417