On prime and semiprime rings with generalized derivations and non-commutative Banach algebras

被引:0
作者
MOHD ARIF RAZA
NADEEM UR REHMAN
机构
[1] Aligarh Muslim University,Department of Mathematics
来源
Proceedings - Mathematical Sciences | 2016年 / 126卷
关键词
Banach algebras; generalized derivations; martindale ring of quotients; prime and semiprime rings; radical; 46J10; 16N20; 16N60; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring of characteristic different from 2 and m a fixed positive integer. If R admits a generalized derivation associated with a nonzero deviation d such that [F(x),d(y)]m=[x,y] for all x,y in some appropriate subset of R, then R is commutative. Moreover, we also examine the case R is a semiprime ring. Finally, we apply the above result to Banach algebras, and we obtain a non-commutative version of the Singer–Werner theorem.
引用
收藏
页码:389 / 398
页数:9
相关论文
共 50 条
  • [31] ON COMMUTATIVITY OF SEMIPRIME RINGS WITH GENERALIZED DERIVATIONS
    Golbasi, Oznur
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (03) : 191 - 199
  • [32] Nilpotent and invertible values in semiprime rings with generalized derivations
    Asma Ali
    Shakir Ali
    Vincenzo De Filippis
    Aequationes mathematicae, 2011, 82 : 123 - 134
  • [33] Nilpotent and invertible values in semiprime rings with generalized derivations
    Ali, Asma
    Ali, Shakir
    De Filippis, Vincenzo
    AEQUATIONES MATHEMATICAE, 2011, 82 (1-2) : 123 - 134
  • [34] STUDY OF (σ, τ)-GENERALIZED DERIVATIONS WITH THEIR COMPOSITION OF SEMIPRIME RINGS
    Fosner, Ajda
    Atteya, Mehsin Jabel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (04): : 535 - 558
  • [35] Lie Ideals and Generalized Derivations in Semiprime Rings
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 45 - 54
  • [36] Multiplicative (generalized)-derivations and left ideals in semiprime rings
    Ali, Asma
    Dhara, Basudeb
    Khan, Shahoor
    Ali, Farhat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1293 - 1306
  • [37] Left Ideals and Pair of Generalized Derivations in Semiprime Rings
    Ali, Asma
    Khan, Shahoor
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (04) : 461 - 465
  • [38] A note on generalized derivations in Banach algebras
    Liu, Cheng-Kai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 192 - 197
  • [39] NOTES ON GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Koc, Emine
    Rehman, Nadeem Ur
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 117 - 123
  • [40] On Multiplicative (Generalized)-(α, β)-Derivations in Prime Rings
    Garg, Chirag
    Sharma, R. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (02) : 318 - 329