Complete weight enumerators of some linear codes from quadratic forms

被引:0
作者
Dan Zhang
Cuiling Fan
Daiyuan Peng
Xiaohu Tang
机构
[1] Southwest Jiaotong University,The Information Security and National Computing Grid Laboratory
[2] Science and Technology on Communication Security Laboratory,School of Mathematics
[3] Southwest Jiaotong University,State Key Laboratory of Information Security, Institute of Information Engineering
[4] Chinese Academy of Sciences,undefined
来源
Cryptography and Communications | 2017年 / 9卷
关键词
Linear codes; Codes with few weights; Quadratic form; Weight distribution; Complete weight enumerator; 94A24; 94B35; 94B15; 94A55;
D O I
暂无
中图分类号
学科分类号
摘要
Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, a construction of q-ary linear codes with few weights employing general quadratic forms over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb {F}}_{q}$\end{document} is proposed, where q is an odd prime power. This generalizes some earlier constructions of p-ary linear codes from quadratic bent functions over the prime field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb {F}}_{p}$\end{document}, where p is an odd prime. The complete weight enumerators of the resultant q-ary linear codes are also determined.
引用
收藏
页码:151 / 163
页数:12
相关论文
共 36 条
  • [1] Blake IF(1991)On the complete weight enumerators of Reed-Solomon codes SIAM J. Discrete Math. 4 167-171
  • [2] Kith K(1984)Three-weight codes and association schemes Philips J. Res. 39 143-152
  • [3] Calderbank AR(2005)Linear codes from perfect nonlinear mappings and their secret sharing schemes IEEE Trans. Inform. Theory 51 2089-2102
  • [4] Goethals JM(2015)Linear codes from some 2-designs IEEE Trans. Inform. Theory 61 3265-3275
  • [5] Carlet C(2007)A generic construction of Cartesian authentication codes IEEE Trans. Inform. Theory 53 2229-2235
  • [6] Ding C(2013)Hamming weights in irreducible cyclic codes Discret. Math. 313 434-446
  • [7] Yuan J(2011)The weight distribution of the duals of cyclic codes with two zeros IEEE Trans. Inform. Theory 57 8000-8006
  • [8] Ding C(2005)A coding theory construction of new systematic authentication codes Theor. Comput. Sci. 330 81-99
  • [9] Ding C(2015)A class of two-weight and three-weight codes and their applications in secret sharing IEEE Trans. Inform. Theory 61 5835-5842
  • [10] Helleseth T(2008)Weight distribution of some reducible cyclic codes Finite Fields Appl. 14 390-409