Defining Lorentzian Sabban frame of the unit speed time-like curves on de Sitter 2-space S12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{S}}_{1}^{2} $$\end{document} and introducing space-like height function on the unit speed time-like curves on S12,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{S}}_{1}^{2} , $$\end{document} the invariants of the unit speed time-like curves on S12,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{S}}_{1}^{2} , $$\end{document} and geometric properties of de Sitter evolutes of the unit speed time-like curves on S12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{S}}_{1}^{2} $$\end{document} are studied. A relation between space-like Bertrand curves and helices is obtained. De Sitter Darboux images of space-like Bertrand curves are equal to de Sitter evolutes. The relations between time-like constant slope surfaces lying in the space-like cone and space-like Bertrand curves in Minkowski 3-space R13\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{R}}_{1}^{3} $$\end{document} are obtained.