Hydrodynamic limit in a particle system with topological interactions

被引:12
作者
Carinci G. [1 ]
De Masi A. [2 ]
Giardinà C. [1 ]
Presutti E. [3 ]
机构
[1] Dipartimento di Scienze fisiche, Informatiche e matematiche, Università di Modena e Reggio Emilia, via Campi 213/b, Modena
[2] Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università di L’Aquila, via Vetoio 1, L’Aquila
[3] GSSI, viale F. Crispi 7, L’Aquila
关键词
60K35;
D O I
10.1007/s40065-014-0095-4
中图分类号
学科分类号
摘要
We study a system of particles in the interval [0 , ϵ- 1] ∩ Z, ϵ- 1 a positive integer. The particles move as symmetric independent random walks (with reflections at the endpoints); simultaneously new particles are injected at site 0 at rate jϵ (j > 0) and removed at same rate from the rightmost occupied site. The removal mechanism is, therefore, of topological rather than metric nature. The determination of the rightmost occupied site requires a knowledge of the entire configuration and prevents from using correlation functions techniques. We prove using stochastic inequalities that the system has a hydrodynamic limit, namely that under suitable assumptions on the initial configurations, the law of the density fields ϵ∑ϕ(ϵx)ξϵ-2t(x) (φ a test function, ξt(x) the number of particles at site x at time t) concentrates in the limit ϵ→ 0 on the deterministic value ∫ ϕρt, ρt interpreted as the limit density at time t. We characterize the limit ρt as a weak solution in terms of barriers of a limit-free boundary problem. [MediaObject not available: see fulltext.] © 2014, The Author(s).
引用
收藏
页码:381 / 417
页数:36
相关论文
共 50 条
[41]   Accurate measurement of hydrodynamic interactions between a particle and walls [J].
K. Masmoudi ;
N. Lecoq ;
R. Anthore ;
F. Bostel ;
F. Feuillebois .
Experiments in Fluids, 2002, 32 :55-65
[42]   Active microrheology using a two-particle system coupled by hydrodynamic interactions in optical tweezers [J].
Paul, Shuvojit ;
Kumar, Randhir ;
Banerjee, Ayan .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XV, 2018, 10723
[43]   Hyperbolic conservation laws with discontinuous fluxes and hydrodynamic limit for particle systems [J].
Chen, Gui-Qiang ;
Even, Nadine ;
Klingenberg, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (11) :3095-3126
[44]   Hydrodynamic limit for particle systems with degenerate rates without exclusive constraints [J].
Sasada, Makiko .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 7 :277-292
[45]   HYDRODYNAMIC LIMIT OF THE BOLTZMANN-MONGE-AMPERE SYSTEM [J].
Ben Belgacem, F. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03) :493-499
[46]   Generalized Hydrodynamic Limit for the Box-Ball System [J].
Croydon, David A. ;
Sasada, Makiko .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (01) :427-463
[47]   Hydrodynamic limit for a Fleming-Viot type system [J].
Grigorescu, I ;
Kang, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 110 (01) :111-143
[48]   Hydrodynamic interactions between a particle and two rigid walls: Effect of surface roughness and many-body hydrodynamic interactions [J].
Grasselli, Y ;
Lobry, L .
PHYSICS OF FLUIDS, 1997, 9 (12) :3929-3931
[49]   Putting hydrodynamic interactions to work: Tagged-particle separation [J].
Iguain, JL ;
Kurchan, J .
EUROPHYSICS LETTERS, 2003, 63 (05) :715-721
[50]   Advanced continuum modelling of gas-particle flows beyond the hydrodynamic limit [J].
Passalacqua, A. ;
Fox, R. O. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (04) :1616-1627