Hydrodynamic limit in a particle system with topological interactions

被引:12
作者
Carinci G. [1 ]
De Masi A. [2 ]
Giardinà C. [1 ]
Presutti E. [3 ]
机构
[1] Dipartimento di Scienze fisiche, Informatiche e matematiche, Università di Modena e Reggio Emilia, via Campi 213/b, Modena
[2] Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università di L’Aquila, via Vetoio 1, L’Aquila
[3] GSSI, viale F. Crispi 7, L’Aquila
关键词
60K35;
D O I
10.1007/s40065-014-0095-4
中图分类号
学科分类号
摘要
We study a system of particles in the interval [0 , ϵ- 1] ∩ Z, ϵ- 1 a positive integer. The particles move as symmetric independent random walks (with reflections at the endpoints); simultaneously new particles are injected at site 0 at rate jϵ (j > 0) and removed at same rate from the rightmost occupied site. The removal mechanism is, therefore, of topological rather than metric nature. The determination of the rightmost occupied site requires a knowledge of the entire configuration and prevents from using correlation functions techniques. We prove using stochastic inequalities that the system has a hydrodynamic limit, namely that under suitable assumptions on the initial configurations, the law of the density fields ϵ∑ϕ(ϵx)ξϵ-2t(x) (φ a test function, ξt(x) the number of particles at site x at time t) concentrates in the limit ϵ→ 0 on the deterministic value ∫ ϕρt, ρt interpreted as the limit density at time t. We characterize the limit ρt as a weak solution in terms of barriers of a limit-free boundary problem. [MediaObject not available: see fulltext.] © 2014, The Author(s).
引用
收藏
页码:381 / 417
页数:36
相关论文
共 50 条
[21]   HYDRODYNAMIC LIMIT FOR ATTRACTIVE PARTICLE-SYSTEMS ON ZD [J].
REZAKHANLOU, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (03) :417-448
[22]   Super-Hydrodynamic Limit in Interacting Particle Systems [J].
Carinci, Gioia ;
De Masi, Anna ;
Giardina, Cristian ;
Presutti, Errico .
JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (05) :867-887
[23]   Particle Lagrangian tracking with hydrodynamic interactions and collisions [J].
Berlemont, A ;
Chang, ZZ ;
Gouesbet, G .
FLOW TURBULENCE AND COMBUSTION, 1998, 60 (01) :1-18
[24]   Particle Lagrangian Tracking with Hydrodynamic Interactions and Collisions [J].
Alain Berlemont ;
Zezhou Chang ;
Gérard Gouesbet .
Flow, Turbulence and Combustion, 1998, 60 :1-18
[25]   HYDRODYNAMIC INTERACTIONS AND DIFFUSION IN CONCENTRATED PARTICLE SUSPENSIONS [J].
PUSEY, PN ;
TOUGH, RJA .
FARADAY DISCUSSIONS, 1983, 76 :123-136
[26]   Measurement of particle/membrane interactions by a hydrodynamic method [J].
Elzo, D ;
Schmitz, P ;
Houi, D ;
Joscelyne, S .
JOURNAL OF MEMBRANE SCIENCE, 1996, 109 (01) :43-53
[27]   Hydrodynamic interactions and extreme particle clustering in turbulence [J].
Bragg, Andrew D. ;
Hammond, Adam L. ;
Dhariwal, Rohit ;
Meng, Hui .
JOURNAL OF FLUID MECHANICS, 2022, 933
[28]   Hydrodynamic Limit of Multiscale Viscoelastic Models for Rigid Particle Suspensions [J].
Duerinckx, Mitia ;
Ertzbischoff, Lucas ;
Girodroux-Lavigne, Alexandre ;
Hoefer, Richard M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2025, 249 (02)
[29]   HYDRODYNAMIC LIMIT FOR A 2D INTERLACED PARTICLE PROCESS [J].
Lerouvillois, Vincent ;
Toninelli, Fabio .
ANNALS OF APPLIED PROBABILITY, 2022, 32 (01) :167-190