Hydrodynamic limit in a particle system with topological interactions

被引:12
|
作者
Carinci G. [1 ]
De Masi A. [2 ]
Giardinà C. [1 ]
Presutti E. [3 ]
机构
[1] Dipartimento di Scienze fisiche, Informatiche e matematiche, Università di Modena e Reggio Emilia, via Campi 213/b, Modena
[2] Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università di L’Aquila, via Vetoio 1, L’Aquila
[3] GSSI, viale F. Crispi 7, L’Aquila
关键词
60K35;
D O I
10.1007/s40065-014-0095-4
中图分类号
学科分类号
摘要
We study a system of particles in the interval [0 , ϵ- 1] ∩ Z, ϵ- 1 a positive integer. The particles move as symmetric independent random walks (with reflections at the endpoints); simultaneously new particles are injected at site 0 at rate jϵ (j > 0) and removed at same rate from the rightmost occupied site. The removal mechanism is, therefore, of topological rather than metric nature. The determination of the rightmost occupied site requires a knowledge of the entire configuration and prevents from using correlation functions techniques. We prove using stochastic inequalities that the system has a hydrodynamic limit, namely that under suitable assumptions on the initial configurations, the law of the density fields ϵ∑ϕ(ϵx)ξϵ-2t(x) (φ a test function, ξt(x) the number of particles at site x at time t) concentrates in the limit ϵ→ 0 on the deterministic value ∫ ϕρt, ρt interpreted as the limit density at time t. We characterize the limit ρt as a weak solution in terms of barriers of a limit-free boundary problem. [MediaObject not available: see fulltext.] © 2014, The Author(s).
引用
收藏
页码:381 / 417
页数:36
相关论文
共 50 条
  • [12] 3 PARTICLE HYDRODYNAMIC INTERACTIONS IN SUSPENSIONS
    CLERCX, HJH
    SCHRAM, PPJM
    JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (04): : 3137 - 3151
  • [13] Hydrodynamic interactions in dissipative particle dynamics
    Li, Zhigang
    Drazer, German
    PHYSICS OF FLUIDS, 2008, 20 (10)
  • [14] Particle clustering due to hydrodynamic interactions
    Wylie, JJ
    Koch, DL
    PHYSICS OF FLUIDS, 2000, 12 (05) : 964 - 970
  • [15] THE HYDRODYNAMIC LIMIT FOR A SYSTEM WITH INTERACTIONS PRESCRIBED BY GINZBURG-LANDAU TYPE RANDOM HAMILTONIAN
    FUNAKI, T
    PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (04) : 519 - 562
  • [16] Strong hydrodynamic limit for attractive particle systems on Z
    Bahadoran, C.
    Guiol, H.
    Ravishankar, K.
    Saada, E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1 - 43
  • [17] Hydrodynamic limit for particle systems with nonconstant speed parameter
    Covert, P
    Rezakhanlou, F
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) : 383 - 426
  • [18] Super-Hydrodynamic Limit in Interacting Particle Systems
    Gioia Carinci
    Anna De Masi
    Cristian Giardinà
    Errico Presutti
    Journal of Statistical Physics, 2014, 155 : 867 - 887
  • [19] Hydrodynamic Limit for Particle Systems With Nonconstant Speed Parameter
    Covert, P.
    Rezakhanlou, F.
    Journal of Statistical Physics, 88 (1-2):
  • [20] Hydrodynamic limit for particle systems with nonconstant speed parameter
    Paul Covert
    Fraydoun Rezakhanlou
    Journal of Statistical Physics, 1997, 88 : 383 - 426