Hydrodynamic limit in a particle system with topological interactions

被引:12
作者
Carinci G. [1 ]
De Masi A. [2 ]
Giardinà C. [1 ]
Presutti E. [3 ]
机构
[1] Dipartimento di Scienze fisiche, Informatiche e matematiche, Università di Modena e Reggio Emilia, via Campi 213/b, Modena
[2] Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università di L’Aquila, via Vetoio 1, L’Aquila
[3] GSSI, viale F. Crispi 7, L’Aquila
关键词
60K35;
D O I
10.1007/s40065-014-0095-4
中图分类号
学科分类号
摘要
We study a system of particles in the interval [0 , ϵ- 1] ∩ Z, ϵ- 1 a positive integer. The particles move as symmetric independent random walks (with reflections at the endpoints); simultaneously new particles are injected at site 0 at rate jϵ (j > 0) and removed at same rate from the rightmost occupied site. The removal mechanism is, therefore, of topological rather than metric nature. The determination of the rightmost occupied site requires a knowledge of the entire configuration and prevents from using correlation functions techniques. We prove using stochastic inequalities that the system has a hydrodynamic limit, namely that under suitable assumptions on the initial configurations, the law of the density fields ϵ∑ϕ(ϵx)ξϵ-2t(x) (φ a test function, ξt(x) the number of particles at site x at time t) concentrates in the limit ϵ→ 0 on the deterministic value ∫ ϕρt, ρt interpreted as the limit density at time t. We characterize the limit ρt as a weak solution in terms of barriers of a limit-free boundary problem. [MediaObject not available: see fulltext.] © 2014, The Author(s).
引用
收藏
页码:381 / 417
页数:36
相关论文
共 50 条
[11]   HYDRODYNAMIC LIMIT OF A NONGRADIENT INTERACTING PARTICLE PROCESS [J].
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (3-4) :873-892
[12]   3 PARTICLE HYDRODYNAMIC INTERACTIONS IN SUSPENSIONS [J].
CLERCX, HJH ;
SCHRAM, PPJM .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (04) :3137-3151
[13]   Hydrodynamic interactions in dissipative particle dynamics [J].
Li, Zhigang ;
Drazer, German .
PHYSICS OF FLUIDS, 2008, 20 (10)
[14]   Particle clustering due to hydrodynamic interactions [J].
Wylie, JJ ;
Koch, DL .
PHYSICS OF FLUIDS, 2000, 12 (05) :964-970
[15]   THE HYDRODYNAMIC LIMIT FOR A SYSTEM WITH INTERACTIONS PRESCRIBED BY GINZBURG-LANDAU TYPE RANDOM HAMILTONIAN [J].
FUNAKI, T .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (04) :519-562
[16]   Strong hydrodynamic limit for attractive particle systems on Z [J].
Bahadoran, C. ;
Guiol, H. ;
Ravishankar, K. ;
Saada, E. .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :1-43
[17]   Hydrodynamic limit for particle systems with nonconstant speed parameter [J].
Covert, P ;
Rezakhanlou, F .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) :383-426
[18]   Super-Hydrodynamic Limit in Interacting Particle Systems [J].
Gioia Carinci ;
Anna De Masi ;
Cristian Giardinà ;
Errico Presutti .
Journal of Statistical Physics, 2014, 155 :867-887
[19]   Hydrodynamic Limit for Particle Systems With Nonconstant Speed Parameter [J].
Covert, P. ;
Rezakhanlou, F. .
Journal of Statistical Physics, 88 (1-2)
[20]   Hydrodynamic limit for particle systems with nonconstant speed parameter [J].
Paul Covert ;
Fraydoun Rezakhanlou .
Journal of Statistical Physics, 1997, 88 :383-426