Parallel Interior Point Schemes for Solving Multistage Convex Programming

被引:0
作者
M. Hegland
M.R. Osborne
J. Sun
机构
[1] Australian National University,Centre for Mathematics and its Applications
[2] National University of Singapore,Singapore
来源
Annals of Operations Research | 2001年 / 108卷
关键词
interior point methods; multistage optimisation; parallel computation;
D O I
暂无
中图分类号
学科分类号
摘要
The predictor–corrector interior-point path-following algorithm is promising in solving multistage convex programming problems. Among many other general good features of this algorithm, especially attractive is that the algorithm allows possibility to parallelise the major computations. The dynamic structure of the multistage problems specifies a block-tridiagonal system at each Newton step of the algorithm. A wrap-around permutation is then used to implement the parallel computation for this step.
引用
收藏
页码:75 / 85
页数:10
相关论文
共 24 条
[1]  
Lustig L.J.(1992)On implementing Mehrotra's predictor-corrector interior point method for linear programming SIAM Journal on Optimization 2 435-449
[2]  
Marsten R.E.(1989)An implementation of a primal-dual interior point method for linear programming ORSA Journal on Computing 1 70-83
[3]  
Shanno D.F.(1992)On the implementation of a primal-dual interior point method SIAM Journal on Optimization 2 575-601
[4]  
McShane K.(1993)On adaptive step primal-dual interior-point algorithm for linear programming Mathematics of Operations Research 18 964-981
[5]  
Monma C.(1988)Multistage convex programming and discrete-time optimal control Control and Cybernetics 17 225-245
[6]  
Shanno D.F.(1990)Generalized linear quadratic problems of deterministic and stochastic optimal control in discrete time SIAM J. Control and Optimization 28 810-822
[7]  
Mehrotra S.(1998)Global linear and local quadratic convergence of a long-step adaptive-mode interior point method for some monotone variational inequality problems SIAM Journal on Optimization 8 123-139
[8]  
Mizuno S.(1997)A predictor-corrector algorithm for a class of nonlinear saddle point problems SIAM Journal on Control and Optimization 35 532-551
[9]  
Todd M.(1992)Stable parallel algorithms for two-point boundary value problems SIAM J. Sci. Statist. Comput. 13 742-762
[10]  
Ye Y.(1993)A collection of problems for which Gaussian elimination with partial pivoting is unstable SIAM J. Sci. Statist. Comput. 14 231-238