On some parabolic equations involving superlinear singular gradient terms

被引:1
作者
Martina Magliocca
Francescantonio Oliva
机构
[1] Centre Borelli,Dipartimento di Matematica e Applicazioni
[2] ENS Paris-Saclay,undefined
[3] Università di Napoli Federico II,undefined
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Nonlinear parabolic equations; Singular parabolic equations; Repulsive Gradient; 35J60; 35J61; 35J75; 35R06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove existence of nonnegative solutions to parabolic Cauchy–Dirichlet problems with (eventually) singular superlinear gradient terms. The model equation is ut-Δpu=g(u)|∇u|q+h(u)f(t,x)in(0,T)×Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t - \Delta _pu=g(u)|\nabla u|^q+h(u)f(t,x)\qquad \text {in }(0,T)\times \Omega , \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\mathbb {R}}}\,}}^N$$\end{document} with N>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2$$\end{document}, 0<T<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<T<+\infty $$\end{document}, 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document}, and q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<p$$\end{document} is superlinear. The functions g,h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g,\,h$$\end{document} are continuous and possibly satisfying g(0)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(0) = +\infty $$\end{document} and/or h(0)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(0)= +\infty $$\end{document}, with different rates. Finally, f is nonnegative and it belongs to a suitable Lebesgue space. We investigate the relation among the superlinear threshold of q, the regularity of the initial datum and the forcing term, and the decay rates of g,h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g,\,h$$\end{document} at infinity.
引用
收藏
页码:2547 / 2590
页数:43
相关论文
共 50 条
  • [31] Backward estimates for nonnegative solutions to a class of singular parabolic equations
    Calahorrano Recalde, Marco Vinicio
    Vespri, Vincenzo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 : 194 - 203
  • [32] Higher regularity of solutions of singular parabolic equations with variable nonlinearity
    Antontsev, S.
    Shmarev, S.
    APPLICABLE ANALYSIS, 2019, 98 (1-2) : 310 - 331
  • [33] GRADIENT REGULARITY FOR A SINGULAR PARABOLIC EQUATION IN NON-DIVERGENCE FORM
    Attouchi, Amal
    Ruosteenoja, Eero
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (10) : 5955 - 5972
  • [34] Nonnegative solutions for a class of singular parabolic problems involving p-Laplacian
    de Bonis, Ida
    Giachetti, Daniela
    ASYMPTOTIC ANALYSIS, 2015, 91 (02) : 147 - 183
  • [35] Local regularity results for some parabolic equations
    Porzio, MM
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (04): : 769 - 792
  • [36] Recent results and open problems on parabolic equations with gradient nonlinearities
    Souplet, Philippe
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [37] Some Nonlinear Parabolic Problems with Singular Natural Growth Term
    El Ouardy, Mounim
    El Hadfi, Youssef
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [38] Some Nonlinear Parabolic Problems with Singular Natural Growth Term
    Mounim El Ouardy
    Youssef El Hadfi
    Results in Mathematics, 2022, 77
  • [39] BLOW-UP OF SOLUTIONS TO SINGULAR PARABOLIC EQUATIONS WITH NONLINEAR SOURCES
    Nguyen Tuan Duy
    Nguyen Dao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [40] Existence of positive solutions to nonlinear singular parabolic equations with Hardy potential
    El Ouardy, Mounim
    El Hadfi, Youssef
    Sbai, Abdelaaziz
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (03)