On some parabolic equations involving superlinear singular gradient terms

被引:1
|
作者
Martina Magliocca
Francescantonio Oliva
机构
[1] Centre Borelli,Dipartimento di Matematica e Applicazioni
[2] ENS Paris-Saclay,undefined
[3] Università di Napoli Federico II,undefined
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Nonlinear parabolic equations; Singular parabolic equations; Repulsive Gradient; 35J60; 35J61; 35J75; 35R06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove existence of nonnegative solutions to parabolic Cauchy–Dirichlet problems with (eventually) singular superlinear gradient terms. The model equation is ut-Δpu=g(u)|∇u|q+h(u)f(t,x)in(0,T)×Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t - \Delta _pu=g(u)|\nabla u|^q+h(u)f(t,x)\qquad \text {in }(0,T)\times \Omega , \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\mathbb {R}}}\,}}^N$$\end{document} with N>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2$$\end{document}, 0<T<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<T<+\infty $$\end{document}, 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document}, and q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<p$$\end{document} is superlinear. The functions g,h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g,\,h$$\end{document} are continuous and possibly satisfying g(0)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(0) = +\infty $$\end{document} and/or h(0)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(0)= +\infty $$\end{document}, with different rates. Finally, f is nonnegative and it belongs to a suitable Lebesgue space. We investigate the relation among the superlinear threshold of q, the regularity of the initial datum and the forcing term, and the decay rates of g,h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g,\,h$$\end{document} at infinity.
引用
收藏
页码:2547 / 2590
页数:43
相关论文
共 50 条
  • [1] On some parabolic equations involving superlinear singular gradient terms
    Magliocca, Martina
    Oliva, Francescantonio
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2547 - 2590
  • [2] Existence of solutions for degenerate parabolic equations with singular terms
    Dall'Aglio, Andrea
    Orsina, Luigi
    Petitta, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 : 273 - 288
  • [3] On the existence of solution for degenerate parabolic equations with singular terms
    Benkirane, Abdelmoujib
    El Haji, Badr
    El Moumni, Mostafa
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2018, 14 (3-4) : 591 - 606
  • [4] Existence and regularity results for some nonlinear singular parabolic problems with absorption terms
    El Ouardy, Mounim
    El Hadfi, Youssef
    Sbai, Abdelaaziz
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (03): : 583 - 612
  • [5] Existence and regularity results for some nonlinear singular parabolic problems with absorption terms
    Mounim El Ouardy
    Youssef El Hadfi
    Abdelaaziz Sbai
    Monatshefte für Mathematik, 2024, 203 : 583 - 612
  • [6] Holder gradient estimates for a class of singular or degenerate parabolic equations
    Imbert, Cyril
    Jin, Tianling
    Silvestre, Luis
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 845 - 867
  • [7] On Some Nonlinear Parabolic Equations with Nonmonotone Multivalued Terms
    Otani, Mitsuharu
    Staicu, Vasile
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (03) : 771 - 794
  • [8] Singular parabolic equations, measures satisfying density conditions, and gradient integrability
    Baroni, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 : 89 - 116
  • [9] Some noncoercive parabolic equations with lower order terms in divergence form
    Lucio Boccardo
    Luigi Orsina
    Alessio Porretta
    Journal of Evolution Equations, 2003, 3 : 407 - 418
  • [10] Some noncoercive parabolic equations with lower order terms in divergence form
    Boccardo, L
    Orsina, L
    Porretta, A
    JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (03) : 407 - 418