Deep transfer learning to quantify pleural effusion severity in chest X-rays

被引:0
作者
Tao Huang
Rui Yang
Longbin Shen
Aozi Feng
Li Li
Ningxia He
Shuna Li
Liying Huang
Jun Lyu
机构
[1] The First Affiliated Hospital of Jinan University,Department of Clinical Research
[2] The First Affiliated Hospital of Jinan University,Department of Rehabilitation Medicine
[3] Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization,undefined
来源
BMC Medical Imaging | / 22卷
关键词
Pleural effusion; Severity; Deep learning; X-rays; Chest radiographs; MIMIC-CXR;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review
    KC Santosh
    Siva Allu
    Sivaramakrishnan Rajaraman
    Sameer Antani
    Journal of Medical Systems, 46
  • [42] Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review
    Santosh, K. C.
    Allu, Siva
    Rajaraman, Sivaramakrishnan
    Antani, Sameer
    JOURNAL OF MEDICAL SYSTEMS, 2022, 46 (11)
  • [43] A Hybrid Deep Learning CNN model for COVID-19 detection from chest X-rays
    Abdullah, Mohan
    Abrha, Ftsum berhe
    Kedir, Beshir
    Tagesse, Takore Tamirat
    HELIYON, 2024, 10 (05)
  • [44] Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
    Tuan D. Pham
    Health Information Science and Systems, 9
  • [45] Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
    Gourdeau, Daniel
    Potvin, Olivier
    Archambault, Patrick
    Chartrand-Lefebvre, Carl
    Dieumegarde, Louis
    Forghani, Reza
    Gagne, Christian
    Hains, Alexandre
    Hornstein, David
    Le, Huy
    Lemieux, Simon
    Levesque, Marie-Helene
    Martin, Diego
    Rosenbloom, Lorne
    Tang, An
    Vecchio, Fabrizio
    Yang, Issac
    Duchesne, Nathalie
    Duchesne, Simon
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [46] Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
    Rajaraman, Sivaramakrishnan
    Yang, Feng
    Zamzmi, Ghada
    Xue, Zhiyun
    Antani, Sameer
    DIAGNOSTICS, 2023, 13 (04)
  • [47] Deep Learning for Covid-19 Screening Using Chest X-Rays in 2020: A Systematic Review
    Santosh, K. C.
    Ghosh, Supriti
    GhoshRoy, Debasmita
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (05)
  • [48] Pneumonia detection on chest X-rays from Xception-based transfer learning and logistic regression
    Mujahid, Muhammad
    Rustam, Furqan
    Chakrabarti, Prasun
    Mallampati, Bhargav
    Diez, Isabel de la Torre
    Gali, Pradeep
    Chunduri, Venkata
    Ashraf, Imran
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (06) : 3847 - 3870
  • [49] Machine Learning Augmented Interpretation of Chest X-rays: A Systematic Review
    Ahmad, Hassan K.
    Milne, Michael R.
    Buchlak, Quinlan D.
    Ektas, Nalan
    Sanderson, Georgina
    Chamtie, Hadi
    Karunasena, Sajith
    Chiang, Jason
    Holt, Xavier
    Tang, Cyril H. M.
    Seah, Jarrel C. Y.
    Bottrell, Georgina
    Esmaili, Nazanin
    Brotchie, Peter
    Jones, Catherine
    DIAGNOSTICS, 2023, 13 (04)
  • [50] Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning
    Yang, Fan
    Tang, Zhi-Ri
    Chen, Jing
    Tang, Min
    Wang, Shengchun
    Qi, Wanyin
    Yao, Chong
    Yu, Yuanyuan
    Guo, Yinan
    Yu, Zekuan
    BMC MEDICAL IMAGING, 2021, 21 (01):