A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture

被引:0
|
作者
Maxfield Leidner
机构
[1] University of Louisville,
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Graph theory; Total coloring; Planar graphs; Discharging;
D O I
暂无
中图分类号
学科分类号
摘要
The article shrinks the Δ = 6 hole that exists in the family of planar graphs which satisfy the total coloring conjecture. Let G be a planar graph. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v_n^k}$$\end{document} represents the number of vertices of degree n which lie on k distinct 3-cycles, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n, k \in \mathbb{N}}$$\end{document} , then the conjecture is true for planar graphs which satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v_5^4 +2(v_5^{5^+} +v_6^4) +3v_6^5 +4v_6^{6^+} < 24}$$\end{document}.
引用
收藏
页码:377 / 388
页数:11
相关论文
共 50 条
  • [1] A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture
    Leidner, Maxfield
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 377 - 388
  • [2] Total Coloring Conjecture for Certain Classes of Graphs
    Vignesh, R.
    Geetha, J.
    Somasundaram, K.
    ALGORITHMS, 2018, 11 (10):
  • [3] Total coloring of planar graphs of maximum degree eight
    Roussel, Nicolas
    Zhu, Xuding
    INFORMATION PROCESSING LETTERS, 2010, 110 (8-9) : 321 - 324
  • [4] Total Coloring of Dumbbell Maximal Planar Graphs
    Zhou, Yangyang
    Zhao, Dongyang
    Ma, Mingyuan
    Xu, Jin
    MATHEMATICS, 2022, 10 (06)
  • [5] A note on the minimum total coloring of planar graphs
    Hui Juan Wang
    Zhao Yang Luo
    Bin Liu
    Yan Gu
    Hong Wei Gao
    Acta Mathematica Sinica, English Series, 2016, 32 : 967 - 974
  • [6] A Note on the Minimum Total Coloring of Planar Graphs
    Hui Juan WANG
    Zhao Yang LUO
    Bin LIU
    Yan GU
    Hong Wei GAO
    Acta Mathematica Sinica,English Series, 2016, (08) : 967 - 974
  • [7] Total coloring of recursive maximal planar graphs
    Zhou, Yangyang
    Zhao, Dongyang
    Ma, Mingyuan
    Xu, Jin
    THEORETICAL COMPUTER SCIENCE, 2022, 909 : 12 - 18
  • [8] A note on the minimum total coloring of planar graphs
    Wang, Hui Juan
    Luo, Zhao Yang
    Liu, Bin
    Gu, Yan
    Gao, Hong Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 967 - 974
  • [9] Total Coloring of Claw-Free Planar Graphs
    Liang, Zuosong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 771 - 777
  • [10] Total coloring of planar graphs without short cycles
    Hua Cai
    Jianliang Wu
    Lin Sun
    Journal of Combinatorial Optimization, 2016, 31 : 1650 - 1664