A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture
被引:0
|
作者:
Maxfield Leidner
论文数: 0引用数: 0
h-index: 0
机构:University of Louisville,
Maxfield Leidner
机构:
[1] University of Louisville,
来源:
Graphs and Combinatorics
|
2014年
/
30卷
关键词:
Graph theory;
Total coloring;
Planar graphs;
Discharging;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The article shrinks the Δ = 6 hole that exists in the family of planar graphs which satisfy the total coloring conjecture. Let G be a planar graph. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${v_n^k}$$\end{document} represents the number of vertices of degree n which lie on k distinct 3-cycles, for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n, k \in \mathbb{N}}$$\end{document} , then the conjecture is true for planar graphs which satisfy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${v_5^4 +2(v_5^{5^+} +v_6^4) +3v_6^5 +4v_6^{6^+} < 24}$$\end{document}.