Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities

被引:0
|
作者
Karel Pravda-Starov
机构
[1] IRMAR,
[2] CNRS UMR 6625,undefined
[3] Université de Rennes 1,undefined
来源
Mathematische Annalen | 2018年 / 372卷
关键词
35S05; 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
We study evolution equations associated to time-dependent dissipative non-selfadjoint quadratic operators. We prove that the solution operators to these non-autonomous evolution equations are given by Fourier integral operators whose kernels are Gaussian tempered distributions associated to non-negative complex symplectic linear transformations, and we derive a generalized Mehler formula for their Weyl symbols. Some applications to the study of the propagation of Gabor singularities (characterizing the lack of Schwartz regularity) for the solutions to non-autonomous quadratic evolution equations are given.
引用
收藏
页码:1335 / 1382
页数:47
相关论文
共 50 条