Identities on Some Special Poynomials Derived from the Concepts of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\it n}$$\end{document}-Normed Structures, Accretive Operators and Contraction Mappings

被引:0
作者
Mehmet Kir
Hemen Dutta
Mehmet Acikgoz
Serkan Araci
机构
[1] Şırnak University,Department of Civil Engineering, Faculty of Engineering
[2] Gauhati University,Department of Mathematics
[3] University of Gaziantep,Department of Mathematics, Faculty of Arts and Science
[4] Hasan Kalyoncu University,Department of Economics, Faculty of Economics, Administrative and Social Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2018年 / 42卷 / 2期
关键词
-Normed space; Fixed point; Non-expansive mapping; Contraction mapping; Accretive operator; Resolvent operator; Yosida’s approximation; -Genocchi polynomials with weight zero; Frobenius–Euler polynomials; -Series;
D O I
10.1007/s40995-016-0101-0
中图分类号
学科分类号
摘要
In this paper, we study the notions of accretive operators, contraction mappings, non-expansive mappings using the idea of n (>1)-normed structures for some relevant results. Further, we define λ,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \lambda ,q\right) $$\end{document}-transform by utilizing the definition of the generating function of q-Genocchi polynomials with weight zero to construct interesting properties related to q-Genocchi polynomials with weight zero and Frobenius–Euler polynomials. Furthermore, we describe p-adic q-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document}-transform of higher order and construct a link between q-Genocchi polynomials of higher order with weight zero and higher order Frobenius–Euler polynomials using this transform. Our applications in this paper provide a link between analytic numbers theory and n-normed spaces.
引用
收藏
页码:787 / 792
页数:5
相关论文
共 47 条
[1]  
Acikgoz M(2010)2- Int Math Forum 5 781-786
[2]  
Acikgoz M(2009) proximinality in generalized 2-Normed spaces Math Moravica 13–2 7-22
[3]  
Aslan N(2007)-adic approach to linear Int J Math Anal 1 187-191
[4]  
Koskeroglu N(2010)-normed spaces Int J Contemp Math Sci 5 1187-1192
[5]  
Araci S(2012)A review on 2-structures Adv Stud Contemp Math 22 399-406
[6]  
Acikgöz M(2015)The generalization of appollonious identity to linear Appl Math Comput 266 675-686
[7]  
Acıkgöz M(2014)-normed space Appl Math Comput 228 162-169
[8]  
Aslan N(2010)A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials Asian Eur J Math 03 565-24
[9]  
Araci S(2012)-Weighted statistical conergence and Korovkinv and Voronovskaya type theorems Math Sci 6 56-364
[10]  
Araci S(2011)A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean J Math Anal 2 18-639