Algebraic-geometric operators and Galois differential theory

被引:0
作者
N. V. Grigorenko
机构
[1] Kiev National Agricultural University,
来源
Ukrainian Mathematical Journal | 2009年 / 61卷
关键词
Singular Point; Meromorphic Function; Elliptic Function; Galois Group; Darboux Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
We show that, by using the Galois differential theory, one can substantially improve the description of algebraic-geometric operators. In particular, we give a complete description of all elementary algebraic-geometric operators, present simple relations for the construction of all second-order operators of this type, and give a criterion for testing the algebraic-geometric properties of a linear differential operator with meromorphic coefficients.
引用
收藏
页码:14 / 29
页数:15
相关论文
共 6 条
[1]  
Floquet G(1979)Sur la théorie des équations differentielles linéaries Ann. Sci. Ecole Norm. Supér 8 1-132
[2]  
Weikard R(2000)On rational and periodic solutions of stationary KdV equations Doc. Math. J. 5 109-126
[3]  
Grigorenko NV(1975)Abelian extensions in the Picard–Vessiot theory Mat. Zametki 17 113-117
[4]  
Kovacic J(2006)Geometric characterization of strongly normal extensions Trans. Amer. Math. Soc. 358 4135-4157
[5]  
Ohmiya M(2004)Darboux–Lamé equation and isomonodromic deformations Abstr. Appl. Anal. 6 511-524
[6]  
Grigorenko NV(1983)Logarithmic singularities of Fuchsian equations and a criterion for finiteness of a monodromy group Mat. Zametki 33 881-884