New examples of Willmore submanifolds in the unit sphere via isoparametric functions

被引:0
作者
Zizhou Tang
Wenjiao Yan
机构
[1] Beijing Normal University,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems
来源
Annals of Global Analysis and Geometry | 2012年 / 42卷
关键词
Willmore submanifold; FKM-type isoparametric functions; Focal submanifolds; 53A30; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
An isometric immersion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x:M^n\rightarrow S^{n+p}}$$\end{document} is called Willmore if it is an extremal submanifold of the Willmore functional: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(x)=\int\nolimits_{M^n} (S-nH^2)^{\frac{n}{2}}dv}$$\end{document}, where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.
引用
收藏
页码:403 / 410
页数:7
相关论文
共 14 条
[1]  
Cartan E.(1938)Familles de surfaces isoparamétriques dans les espaces à courbure constante Annali di Mat. 17 177-191
[2]  
Cartan E.(1939)Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques Math. Z. 45 335-367
[3]  
Cartan E.(1940)Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions Revista Univ. Tucuman Serie A 1 5-22
[4]  
Ferus D.(1981)Cliffordalgebren und neue isoparametrische Hyperflächen Math. Z. 177 479-502
[5]  
Karcher H.(2001)The second variation formula for Willmore submanifolds in Results Math. 40 205-225
[6]  
Münzner H.F.(2001)Willmore hypersurfaces in a sphere Asian J. Math. 5 365-377
[7]  
Guo Z.(1988)Conformal geometry Atti Sem. Mat. Fis. Univ. Modena 36 237-245
[8]  
Li H.(1987)Isoparametric Functions on Riemannian Manifolds. I Math. Ann. 277 639-646
[9]  
Wang C.P.(1998)Moebius geometry of submanifolds in Manuscripta Math. 96 517-534
[10]  
Li H.(undefined)undefined undefined undefined undefined-undefined