On Second Moment of Selberg Zeta-Function for σ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1$$\end{document}

被引:0
作者
Paulius Drungilas
Ramūnas Garunkštis
Aivaras Novikas
机构
[1] Vilnius University,Institute of Mathematics, Faculty of Mathematics and Informatics
关键词
Selberg zeta-function; second moment; mean value theorems; Beurling zeta-function; 11M26; 11M36; 11M41;
D O I
10.1007/s00025-021-01492-5
中图分类号
学科分类号
摘要
Let Z(s) be the Selberg zeta-function for the modular group. We consider the existence of the second moments of Z(s) and of its reciprocal on σ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1$$\end{document}. The existence of such moments is related to the properties of certain Beurling natural numbers. Here the behavior of the counting function and the distribution of minimal gaps between these Beurling natural numbers are important. We also obtain unconditional upper bounds for these moments.
引用
收藏
相关论文
共 20 条
[1]  
Aoki Y(2020)The mean square of the logarithmic derivative of the Selberg zeta-function for cocompact discrete subgroups Kyushu J. Math. 74 353-373
[2]  
Drungilas P(2013)Universality of the Selberg zeta-function for the modular group Forum Math. 25 533-564
[3]  
Garunkštis R(2019)Second moment of the Beurling zeta-function Lith. Math. J. 59 317-337
[4]  
Kačėnas A(2016)The size of the Selberg zeta-function at places symmetric with respect to the line Results Math. 70 271-281
[5]  
Drungilas P(2017)On the distribution of the J. Number Theory 173 64-86
[6]  
Garunkštis R(2019)-values of the Selberg zeta-function associated to finite volume Riemann surfaces Lith. Math. J. 59 143-155
[7]  
Novikas A(2006)On the vertical distribution of the a-points of the Selberg zeta-function attached to a finite volume Riemann surface Acta Appl. Math. 94 21-48
[8]  
Garunkštis R(1988)Beurling zeta functions, generalised primes, and fractal membranes Proc. Jpn. Acad. Ser. A Math. Sci. 64 21-24
[9]  
Grigutis A(1989)Parabolic components of zeta functions Contemp. Math. 83 133-150
[10]  
Garunkštis R(2008)Special values of Selberg zeta functions Acta Arith. 133 325-348