7-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 consistent truncations using SL(5) exceptional field theory

被引:0
作者
Emanuel Malek
机构
[1] Ludwig-Maximilians-Universität München,Arnold Sommerfeld Center for Theoretical Physics, Department für Physik
关键词
Flux compactifications; String Duality; Supergravity Models; Superstring Vacua;
D O I
10.1007/JHEP06(2017)026
中图分类号
学科分类号
摘要
We show how to construct seven-dimensional half-maximally supersymmetric consistent truncations of 11-/10-dimensional SUGRA using SL(5) exceptional field theory. Such truncations are defined on generalised SU(2)-structure manifolds and give rise to seven-dimensional half-maximal gauged supergravities coupled to n vector multiplets and thus with scalar coset space ℝ+×O3,n/O3×On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}}^{+}\times \mathrm{O}\left(3,\ n\right)/\mathrm{O}(3)\times \mathrm{O}(n) $$\end{document}. The consistency conditions for the truncation can be written in terms of the generalised Lie derivative and take a simple geometric form. We show that after imposing certain “doublet” and “closure” conditions, the embedding tensor of the gauged supergravity is given by the intrinsic torsion of generalised SU(2)-connections, which for consistency must be constant, and automatically satisfies the linear constraint of seven-dimensional half-maximal gauged supergravities, as well as the quadratic constraint when the section condition is satisfied.
引用
收藏
相关论文
共 179 条
  • [1] Duff MJ(1984)On the Consistency of the Kaluza-Klein Ansatz Phys. Lett. B 149 90-undefined
  • [2] Nilsson BEW(1979)How to Get Masses from Extra Dimensions Nucl. Phys. B 153 61-undefined
  • [3] Pope CN(1993)Superspace duality in low-energy superstrings Phys. Rev. D 48 2826-undefined
  • [4] Warner NP(1993)Two vierbein formalism for string inspired axionic gravity Phys. Rev. D 47 5453-undefined
  • [5] Scherk J(2007)Doubled Geometry and T-Folds JHEP 07 080-undefined
  • [6] Schwarz JH(2009)Double Field Theory JHEP 09 099-undefined
  • [7] Siegel W(2007)Generalised Geometry for M-theory JHEP 07 079-undefined
  • [8] Siegel W(2011)Generalized Geometry and M-theory JHEP 06 074-undefined
  • [9] Hull CM(2011)Supergravity as Generalised Geometry I: Type II Theories JHEP 11 091-undefined
  • [10] Hull C(2014) generalised geometry, connections and M-theory JHEP 02 054-undefined