Radial solutions for a fractional Kirchhoff type equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}

被引:0
作者
Mohammed Massar
Mohamed Talbi
机构
[1] FTSH,Department of Mathematics
[2] Abdelmalek Essaadi University,undefined
[3] CRMEF,undefined
关键词
Fractional Kirchhoff equations; Radial solutions; Variational methods; 35A15; 35J60; 35R09;
D O I
10.1007/s13226-021-00106-8
中图分类号
学科分类号
摘要
This work is concerned with the following equation of Kirchhoff type involving the fractional Laplacian a+b∫RN(-Δ)s2u2dx(-Δ)su+u=f(u)inRN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( a+b\int _{\mathbb {R}^N}\left| (-\varDelta )^{\frac{s}{2}}u\right| ^2dx\right) (-\varDelta )^su+u=f(u) \, \text{ in } \mathbb {R}^N. \end{aligned}$$\end{document}By transforming this equation into an equivalent system, under suitable assumptions we establish the existence of at least two nontrivial radial solutions without (AR) condition. Moreover, the nonexistence of solutions is also investigated.
引用
收藏
页码:897 / 902
页数:5
相关论文
共 18 条
[1]  
Applebaum D(2004)Lévy processes from probability to finance and quantum groups Not. Am. Math. Soc. 51 1336-1347
[2]  
Caffarelli L(2012)Nonlocal diffusions, drifts and games Nonlinear Partial Differential Equations, Abel Symposia 7 37-52
[3]  
Di Nezza E(2012)Hitchhiker’s guide to the fractional Sobolev spaces Bull. des Sci. Math. 136 521-573
[4]  
Palatucci G(2014)A critical Kirchhoff type problem involving a nonlocal operator Nonlinear Anal. 94 156-170
[5]  
Valdinoci E(2015)Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition Appl. Math. Comput. 257 409-416
[6]  
Fiscella A(2017)Fractional Kirchhoff equation with a general critical nonlinearity Appl. Math. Lett. 74 140-146
[7]  
Valdinoci E(2000)Fractional quantum mechanics and Lévy path integrals Phys. Lett. 268 298-305
[8]  
Gou T-X(2018)Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities ESAIM Control Optim. Calc. Var. 24 1249-1273
[9]  
Sun H-R(2017)Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian Nonlinear Anal. Real World Appl. 37 56-70
[10]  
Jin H(undefined)undefined undefined undefined undefined-undefined