Convolutions of Normalized Harmonic Mappings

被引:0
作者
Stacey Muir
机构
[1] The University of Scranton,Department of Mathematics
来源
Computational Methods and Function Theory | 2019年 / 19卷
关键词
Harmonic mappings; Convolution; Univalence; Convex in one direction; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Recent results on the convolution of two planar harmonic mappings is built upon the theory that when the convolution of functions from certain families of mappings, such as half-plane or strip mappings, is locally univalent, then the convolution will possess certain direction-convexity properties. Thus, much of the latest work on harmonic convolutions centers around establishing conditions on the dilatations of f1,f2:D→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1, f_2: {\mathbb D}\rightarrow {\mathbb C}$$\end{document} from the families above so that f1∗f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1 * f_2$$\end{document} is locally univalent. Recently, it was noted that normalizations for these families were not treated properly when some dilatations considered did not fix zero. In this paper, we account for a variety of dilatations that do not fix zero by broadening the family from which f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1$$\end{document} and f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_2$$\end{document} are chosen. Additionally, we show that when removing a hypothesis from one of our results it is possible to have a locally univalent convolution that fails to be univalent. This demonstrates that some of the previous work on convolutions cannot simply be modified by a re-normalization while affirming the necessity of the hypothesis.
引用
收藏
页码:583 / 599
页数:16
相关论文
共 21 条
  • [1] Clunie J(1984)Harmonic univalent functions Annales Acad. Sci. Fenn. 9 3-25
  • [2] Sheil-Small T(2001)Convolutions of planar convex harmonic mappings Complex Var. Theory Appl. 45 263-271
  • [3] Dorff M(2012)Convolutions of harmonic convex mappings Complex Var. Elliptic Equ. 57 489-503
  • [4] Dorff M(2015)A note on convexity of convolutions of harmonic mappings Bull. Korean Math. Soc. 52 1925-1935
  • [5] Nowak M(2016)Convolution properties of some harmonic mappings in the right half-plane Bull. Malays. Math. Sci. Soc. 39 439-455
  • [6] Woloszkiewicz M(1936)On the non-vanishing of the Jacobian in certain one-to-one mappings Bull. Am. Math. Soc. 42 689-692
  • [7] Jiang Y(2013)Solution to an open problem on convolutions of harmonic mappings Complex Var. Elliptic Equ. 58 1647-1653
  • [8] Rasila A(2017)Univalency of convolutions of univalent harmonic right half-plane mappings Comput. Methods Funct. Theory 17 289-302
  • [9] Sun Y(2017)Convex combinations of planar harmonic mappings realized through convolutions with half-strip mappings Bull. Malays. Math. Sci. Soc. 40 857-880
  • [10] Kumar R(1976)Univalent functions convex in one direction Publ. Math. Debrecen 23 339-345