Generalized Navier-Stokes equations for active suspensions

被引:0
作者
J. Słomka
J. Dunkel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
The European Physical Journal Special Topics | 2015年 / 224卷
关键词
European Physical Journal Special Topic; Discrete Fourier Transform; Parameter Plane; Active Suspension; Real Positive Root;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a minimal generalization of the incompressible Navier-Stokes equations to describe the complex steady-state dynamics of solvent flow in an active suspension. To account phenomenologically for the presence of an active component driving the ambient fluid flow, we postulate a generic nonlocal extension of the stress-tensor, conceptually similar to those recently introduced in granular flows. Stability and spectral properties of the resulting hydrodynamic model are studied both analytically and numerically for the two-dimensional (2D) case with periodic boundary conditions. Future generalizations of this theory could be useful for quantifying the shear properties of active suspensions.
引用
收藏
页码:1349 / 1358
页数:9
相关论文
共 142 条
[31]  
Drescher K.(1995)undefined Phys. Rev. Lett. 75 4326-undefined
[32]  
Wensink H.H.(1998)undefined Phys. Rev. E 58 4828-undefined
[33]  
Bär M.(2005)undefined Ann. Phys. 318 170-undefined
[34]  
Goldstein R.E.(2010)undefined Annu. Rev. Cond. Mat. Phys. 1 323-undefined
[35]  
Dombrowski C.(2014)undefined Phys. Rev. Lett. 113 258104-undefined
[36]  
Cisneros L.(2002)undefined Phys. Rev. Lett. 89 058101-undefined
[37]  
Chatkaew S.(2013)undefined Proc. Nat. Acad. Sci. 110 6730-undefined
[38]  
Goldstein R.E.(2004)undefined Phys. Rev. E 69 062901-undefined
[39]  
Kessler J.O.(2007)undefined Phys. Rev. Lett. 99 228103-undefined
[40]  
Wolgemuth C.W.(2011)undefined Proc. Natl. Acad. Sci. USA 108 10940-undefined