Generalized Navier-Stokes equations for active suspensions

被引:0
作者
J. Słomka
J. Dunkel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
The European Physical Journal Special Topics | 2015年 / 224卷
关键词
European Physical Journal Special Topic; Discrete Fourier Transform; Parameter Plane; Active Suspension; Real Positive Root;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a minimal generalization of the incompressible Navier-Stokes equations to describe the complex steady-state dynamics of solvent flow in an active suspension. To account phenomenologically for the presence of an active component driving the ambient fluid flow, we postulate a generic nonlocal extension of the stress-tensor, conceptually similar to those recently introduced in granular flows. Stability and spectral properties of the resulting hydrodynamic model are studied both analytically and numerically for the two-dimensional (2D) case with periodic boundary conditions. Future generalizations of this theory could be useful for quantifying the shear properties of active suspensions.
引用
收藏
页码:1349 / 1358
页数:9
相关论文
共 142 条
[1]  
Marchetti M.C.(2013)undefined Rev. Mod. Phys. 85 1143-undefined
[2]  
Joanny J.F.(2007)undefined Exp. Fluids 43 737-undefined
[3]  
Ramaswamy S.(2010)undefined Proc. Natl. Acad. Sci. USA 107 13626-undefined
[4]  
Liverpool T.B.(2010)undefined Nature 467 73-undefined
[5]  
Prost J.(2012)undefined Phys. Rev. Lett. 109 248109-undefined
[6]  
Rao M.(2012)undefined Nature 491 431-undefined
[7]  
Simha R.A.(2013)undefined Phys. Rev. Lett. 110 228102-undefined
[8]  
Cisneros L.H.(2004)undefined Phys. Rev. Lett. 93 098103-undefined
[9]  
Cortez R.(2008)undefined Biophys. J. 95 1564-undefined
[10]  
Dombrowski C.(2009)undefined Proc. Natl. Acad. Sci. 106 15567-undefined