Large Cliques in Hypergraphs with Forbidden Substructures

被引:0
作者
Andreas F. Holmsen
机构
[1] KAIST,Department of Mathematical Sciences
来源
Combinatorica | 2020年 / 40卷
关键词
05C35; 05C65; 52A35;
D O I
暂无
中图分类号
学科分类号
摘要
A result due to Gyárfás, Hubenko, and Solymosi (answering a question of Erdős) states that if a graph G on n vertices does not contain K2,2 as an induced subgraph yet has at least c(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\left(\begin{array}{c}n\\ 2\end{array}\right)$$\end{document} edges, then G has a complete subgraph on at least c210n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{c^2}{10}n$$\end{document} vertices. In this paper we suggest a “higher-dimensional” analogue of the notion of an induced K2,2 which allows us to generalize their result to k-uniform hypergraphs. Our result also has an interesting consequence in discrete geometry. In particular, it implies that the fractional Helly theorem can be derived as a purely combinatorial consequence of the colorful Helly theorem.
引用
收藏
页码:527 / 537
页数:10
相关论文
共 38 条
  • [1] Abbott H(1979)A Turán type problem for interval graphs Discrete Math. 25 85-88
  • [2] Katchalski M(2002)Transversal numbers for hypergraphs arising in geometry Adv. in Appl. Math. 29 79-101
  • [3] Alon N(2017)Helly’s theorem: new variations and applications Algebraic and geometric methods in discrete mathematics 685 55-95
  • [4] Kalai G(1982)A generalization of Caratháeodory’s theorem Discrete Math. 40 141-152
  • [5] Matoušek J(1985)An upper-bound theorem for families of convex sets Geom. Dedicata 19 217-227
  • [6] Meshulam R(1966)A limit theorem in graph theory Studia Sci. Math. Hungar. 1 51-57
  • [7] Amenta N(1946)On the structure of linear graphs Bull. Amer. Math. Soc. 52 1087-1091
  • [8] De Loera J A(2011)The colorful Helly theorem and colorful resolutions of ideals J. Pure Appl. Algebra 215 1255-1262
  • [9] Soberán P(2013)The History of Degenerate (Bipartite) Extremal Graph Problems Erdős Centennial 25 169-264
  • [10] Bárány I(2002)Large cliques in Combinatorica 22 269-274