Study on the improvement of p-type multi-crystalline silicon material for solar cells by the hydrogenation with electron injection

被引:0
作者
Shaomin Li
Jianbo Shao
Xi Xi
Guilin Liu
Ruoying Peng
Rulong Chen
Liping Chen
Yanfeng Jiang
Xiaofeng Gu
机构
[1] Jiangnan University,School of Internet of Things Engineering
[2] Jiangnan University,School of Science
[3] Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology,undefined
[4] Wuxi Suntech Power Co.,undefined
[5] Ltd.,undefined
来源
Bulletin of Materials Science | 2020年 / 43卷
关键词
Hydrogenation; p-type mc-Si material; efficiency improvement; solar cells;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have found that the efficiency of p-type mono-crystalline silicon (mono-Si) passivated emitter and rear contact (PERC) solar cells can be increased by 0.12%abs.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.12{\%}_{\mathrm {{abs.}}}$$\end{document} with the process of hydrogenation with electron injection (HEI). However, the same scheme was not suitable for p-type multi-crystalline silicon (mc-Si) solar cells. To promote power conversion efficiency (PCE) for the mc-Si solar cells, we have explored a developed HEI process for the mc-Si solar cells to improve the device performance. Meanwhile, we also analysed the mechanization inside the solar cells after applying the HEI process. Through the design of experiment (DOE), the correlation among injection current, temperature, injection time and efficiency improvement was analysed in detail. It was proved that mc-Si solar cells require higher current injection and temperature to passivate the complex impurities in the bulk, when compared to mono-Si solar cells. With the optimal scheme explored by this paper, the open circuit voltage (Uoc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\mathrm {{oc}}}$$\end{document}), short circuit current density (Jsc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathrm {{sc}}}$$\end{document}) and fill factor (FF) of p-type mc-Si solar cells, respectively, increased by 1.2 mV, 0.11 mA cm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-\mathrm {{2}}}$$\end{document} and 0.05%abs.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.05{\%}_{\mathrm {{abs.}}}$$\end{document}, respectively. The efficiency was improved about 0.11±0.005%abs.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.11 \pm 0.005{\%}_{\mathrm {{abs.}}}$$\end{document}. These results will provide a certain method and basis for further improving the efficiency of mc-Si PERC cells and overcoming the light-elevated temperature-induced degradation by HEI process.
引用
收藏
相关论文
共 104 条
  • [1] Hallam BJ(2013)undefined IEEE J. Photovolt. 4 88-undefined
  • [2] Hamer PG(2017)undefined Front. Energy 11 32-undefined
  • [3] Wenham SR(2015)undefined Sol. Energy Mater. Sol. Cells 141 125-undefined
  • [4] Abbott MD(2009)undefined Mater. Res. Soc. 1210 1-undefined
  • [5] Sugianto A(1993)undefined Solid State Commun. 88 1019-undefined
  • [6] Wenham AM(2002)undefined J. Electron. Mater. 31 972-undefined
  • [7] Kim M(2013)undefined J. Appl. Phys. 113 404-undefined
  • [8] Hamer P(1989)undefined Phys. Rev. B 40 5867-undefined
  • [9] Li HZ(1990)undefined Phys. Rev. B 41 12354-undefined
  • [10] Payne D(2001)undefined Phys. Rev. B 64 125209-undefined