The Coercivity of Functional Differential Equations

被引:0
作者
Rossovskii L.E. [1 ]
机构
[1] People’s Friendship University of Russia, 6, Miklukho-Maklaya st., Moscow
基金
俄罗斯基础研究基金会;
关键词
Quadratic Form; Sobolev Space; Matrix Operator; Functional Differential Equation; Strong Ellipticity;
D O I
10.1007/s10958-014-2018-5
中图分类号
学科分类号
摘要
New sufficient conditions for the Gårding inequality for variable-coefficient functional differential equations with expanded and contracted arguments of higher derivatives of the unknown function are found. These sufficient conditions generalize earlier known sufficient conditions. © 2014, Springer Science+Business Media New York.
引用
收藏
页码:663 / 672
页数:9
相关论文
共 15 条
  • [1] Agranovich M.S., Vishik M.I., Elliptic problems with a parameter and parabolic of general type, Russ. Math. Surv., 19, 3, pp. 53-157, (1964)
  • [2] Auscher P., Hofmann S., McIntosh A., Tchamitchian P., The Kato square root problem for higher order elliptic operators and systems on ℝ<sup> n</sup> , J. Evol. Equ., 1, 4, pp. 361-385, (2001)
  • [3] Garding L., Dirichlet’s problem for linear elliptic partial differential equations, Math. Scand., 1, pp. 55-72, (1953)
  • [4] Hormander L., The Analysis of Linear Partial Differential Operators. III: Pseudo-Differential Operators, (1985)
  • [5] Kato T., Fractional powers of dissipative operators, J. Math. Soc. Japan, 13, 3, pp. 246-274, (1961)
  • [6] Lions J.L., Espaces d’interpolation et domaines de puissances fractionnaires d’operateurs, J. Math. Soc. Jpn., 14, 2, pp. 233-241, (1962)
  • [7] McIntosh A., On the comparability of A <sup>1/2</sup> and A <sup>∗1/2</sup> , Proc. Am. Math. Soc., 32, 2, pp. 430-434, (1972)
  • [8] Rossovskii L.E., Coercivity of functional differential equations, Math. Notes, 59, 1, pp. 75-82, (1996)
  • [9] Rossovskii L.E., On one class of sectorial functional differential operators, Differ. Uravn., 48, 2, pp. 227-237, (2012)
  • [10] Shamin R.V., On spaces of initial data for differential equations in Hilbert spaces, Sb. Math., 194, 9, pp. 1411-1426, (2003)