Weak solutions to quasilinear wave equations of Klein-Gordon or Sine-Gordon type and relaxation to reaction-diffusion equations

被引:0
|
作者
Bruno Rubino
机构
[1] Dipartimento di Matematica Pura ed Applicata,
[2] Università degli Studi di L'Aquila,undefined
[3] via Vetoio,undefined
[4] loc. Coppito,undefined
[5] I-67010 L'Aquila,undefined
[6] Italy. E-mail: rubino@univaq.it,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 1997年 / 4卷
关键词
Key words and Phrases: Compensated compactness, fractional step method, Klein-Gordon and Sine-Gordon equation, Lax-Friedrichs and Godunov scheme, momentum relaxation time, reaction-diffusion equation, relaxation theory.;
D O I
暂无
中图分类号
学科分类号
摘要
This paper regards the existence of weak solutions for a quasilinear wave equation of Klein-Gordon and Sine-Gordon type with the presence of a linear damping term and the relaxation to the reaction-diffusion equation when the momentum relaxation time tends to zero. In the limit process is fundamental the celebrated Div-curl Lemma of Tartar and Murat.
引用
收藏
页码:439 / 457
页数:18
相关论文
共 50 条