New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions

被引:0
|
作者
Xiaoli Qiang
Ghulam Farid
Muhammad Yussouf
Khuram Ali Khan
Atiq Ur Rahman
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] COMSATS University Islamabad,Department of Mathematics
[3] Attock Campus,Department of Mathematics
[4] University of Sargodha,undefined
来源
Journal of Inequalities and Applications | / 2020卷
关键词
Harmonically convex function; Hadamard inequality; Fejér–Hadamard inequality; Mittag-Leffler function; Fractional integral operators;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to establish new generalized fractional versions of the Hadamard and the Fejér–Hadamard integral inequalities for harmonically convex functions. Fractional integral operators involving an extended generalized Mittag-Leffler function which are further generalized via a monotone increasing function are utilized to get these generalized fractional versions. The results of this paper give several consequent fractional inequalities for harmonically convex functions for known fractional integral operators deducible from utilized generalized fractional integral operators.
引用
收藏
相关论文
共 50 条
  • [41] k-fractional integral inequalities of Hadamard type for exponentially (s, m)-convex functions
    Rehman, Atiq Ur
    Farid, Ghulam
    Bibi, Sidra
    Jung, Chahn Yong
    Kang, Shin Min
    AIMS MATHEMATICS, 2021, 6 (01): : 882 - 892
  • [42] New Hermite-Hadamard type inequalities for product of different convex functions involving certain fractional integral operators
    Set, Erhan
    Choi, Junesang
    Celik, Baris
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2018, 18 (01): : 29 - 36
  • [43] Fejer-Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals
    Farid, Ghulam
    Yussouf, Muhammad
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [44] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    COGENT MATHEMATICS, 2016, 3
  • [45] On Hadamard inequalities for refined convex functions via strictly monotone functions
    Zahra, Moquddsa
    Abuzaid, Dina
    Farid, Ghulam
    Nonlaopon, Kamsing
    AIMS MATHEMATICS, 2022, 7 (11): : 20043 - 20057
  • [46] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    Farid, G.
    Khan, K. A.
    Latif, N.
    Rehman, A. U.
    Mehmood, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [47] Fejer-Type Inequalities for Harmonically Convex Functions and Related Results
    Amer Latif, Muhammad
    SYMMETRY-BASEL, 2023, 15 (08):
  • [48] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    G. Farid
    K. A. Khan
    N. Latif
    A. U. Rehman
    S. Mehmood
    Journal of Inequalities and Applications, 2018
  • [49] On Ostrowski-Mercer inequalities for differentiable harmonically convex functions with applications
    Ali, Muhammad Aamir
    Asjad, Muhammad Imran
    Budak, Huseyin
    Faridi, Waqas Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 8546 - 8559
  • [50] Hermite-Hadamard Type Inequalities for Twice Differantiable Functions via Generalized Fractional Integrals
    Budak, Huseyin
    Ertugral, Fatma
    Pehlivan, Ebru
    FILOMAT, 2019, 33 (15) : 4967 - 4979