Eigenvalue estimates and differential form Laplacians on Alexandrov spaces

被引:3
作者
Lott, John [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
INTERSECTION HOMOLOGY; CURVATURE; CONVERGENCE; COHOMOLOGY;
D O I
10.1007/s00208-018-1644-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give upper bounds on the eigenvalues of the differential form Laplacian on a compact Riemannian manifold. The proof uses Alexandrov spaces with curvature bounded below. We also construct differential form Laplacians on Alexandrov spaces. Under a local biLipschitz assumption on the Alexandrov space, which is conjecturally always satisfied, we show that the differential form Laplacian has a compact resolvent. We identify its kernel with an intersection homology group.
引用
收藏
页码:1737 / 1767
页数:31
相关论文
共 36 条
[1]  
[Anonymous], ADV STUD PURE MATH
[2]  
Berard P, 1988, B AM MATH SOC, V19
[3]  
Burago D., 2001, METRIC GEOMETRY
[4]   ALEXANDROV,A.D. SPACES WITH CURVATURE BOUNDED BELOW [J].
BURAGO, Y ;
GROMOV, M ;
PERELMAN, G .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (02) :1-58
[5]  
CHEEGER J, 1983, J DIFFER GEOM, V18, P575
[6]  
Cheeger J, 2000, J DIFFER GEOM, V54, P37
[7]  
CHEEGER J, 1982, ANN MATH STUD, P303
[8]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[9]   INTEGRAL DISTANCE ON A LIPSCHITZ RIEMANNIAN MANIFOLD [J].
DECECCO, G ;
PALMIERI, G .
MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) :223-243
[10]   EIGENVALUES OF THE LAPLACIAN ON FORMS [J].
DODZIUK, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (03) :437-443