Automatic detection of autism spectrum disorder based on fMRI images using a novel convolutional neural network

被引:2
|
作者
Sabegh A.M. [1 ]
Samadzadehaghdam N. [1 ]
Seyedarabi H. [2 ]
Ghadiri T. [3 ]
机构
[1] Department of Biomedical Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz
[2] Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz
[3] Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz
来源
Res. Biomed. Eng. | / 2卷 / 407-413期
关键词
Autism spectrum disorder; Connectivity matrix; Convolutional neural network; Deep learning; Functional MRI;
D O I
10.1007/s42600-023-00275-x
中图分类号
学科分类号
摘要
Purpose: Heterogeneous mental disorders such as autism spectrum disorder (ASD) are difficult to diagnose, especially in children. The current psychiatric diagnosis process is based solely on the observation of behavioral symptoms. To make a supplementary decision system for a more accurate diagnosis, we can rely on advanced and scalable machine learning methods, namely, deep learning networks. Method: We have developed our model based on resting-state fMRI data from the ABIDE1 database, which includes 17 different imaging sites. After performing a preprocessing pipeline and registering the data onto the atlases, the average time series of brain regions are extracted and the correlation matrix is computed. Then, the most important features of this matrix are identified by using the chi-square feature selection method. A novel architecture of convolutional neural network (CNN) with two-dimensional convolutional layers is proposed to analyze and classify the data. Results: To evaluate the model, three sets of experiments were designed based on different data sets and atlases. Using this method, the highest accuracy obtained in the experiments was 73.53%, which was higher than previous works on classifying ASD from typical controls. Conclusion: This work presented a novel CNN-based model that automatically classifies ASD from healthy controls, showing good classification performance. Most of the previous works done on this database have focused on a limited number of sites. But in this research, the data acquired by all the sites have been used to increase the generalizability of the proposed model. © 2023, The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering.
引用
收藏
页码:407 / 413
页数:6
相关论文
共 50 条
  • [41] Blur Detection in Identity Images Using Convolutional Neural Network
    Khajuria, Karan
    Mehrotra, Kapil
    Gupta, Manish Kumar
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 332 - 337
  • [42] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    Murugan, R.
    Roy, Parthapratim
    SOFT COMPUTING, 2022, 26 (03) : 1057 - 1066
  • [43] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    R Murugan
    Parthapratim Roy
    Soft Computing, 2022, 26 : 1057 - 1066
  • [44] Automatic Nuclei Detection in Histopathological Images based on Convolutional Neural Networks
    Alah, Roaa Safi Abed
    Bilgin, Gokhan
    Albayrak, Abdulkadir
    BIOSIGNALS: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 4: BIOSIGNALS, 2019, : 193 - 200
  • [45] Particle Detection of Complex Images Based on Convolutional Neural Network
    Ge, Yuting
    Liu, Yi
    Xu, Chi
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7228 - 7233
  • [46] Multipattern graph convolutional network-based autism spectrum disorder identification
    Zhou, Wenhao
    Sun, Mingxiang
    Xu, Xiaowen
    Ruan, Yudi
    Sun, Chenhao
    Li, Weikai
    Gao, Xin
    CEREBRAL CORTEX, 2024, 34 (03)
  • [47] Aksara Jawa Text Detection in Scene Images using Convolutional Neural Network
    Afakh, Muhammad Labiyb
    Risnumawan, Anhar
    Anggraeni, Martianda Erste
    Tamara, Mohamad Nasyir
    Ningrum, Endah Suryawati
    2017 INTERNATIONAL ELECTRONICS SYMPOSIUM ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (IES-KCIC), 2017, : 77 - 82
  • [48] Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network
    Bu Y.
    Cha X.
    Zhu J.
    Su Y.
    Lai D.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2022, 39 (02): : 285 - 292
  • [49] Active Fire Detection Using a Novel Convolutional Neural Network Based on Himawari-8 Satellite Images
    Hong, Zhonghua
    Tang, Zhizhou
    Pan, Haiyan
    Zhang, Yuewei
    Zheng, Zhongsheng
    Zhou, Ruyan
    Ma, Zhenling
    Zhang, Yun
    Han, Yanling
    Wang, Jing
    Yang, Shuhu
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [50] Classification of Adults with Autism Spectrum Disorder using Deep Neural Network
    Misman, Muhammad Faiz
    Samah, Azurah A.
    Ezudin, Farah Aqilah
    Abu Majid, Hairuddin
    Shah, Zuraini Ali
    Hashim, Haslina
    Harun, Muhamad Farhin
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA SCIENCES (AIDAS2019), 2019, : 29 - 34