On the nonlinear Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}-Hilfer hybrid fractional differential equations

被引:0
作者
Kishor D. Kucche
Ashwini D. Mali
机构
[1] Shivaji University,Department of Mathematics
关键词
-Hilfer fractional derivative; Fractional differential inequalities; Existence of solution; Extremal solutions; Comparison theorems; 34A38; 26A33; 34A12; 34A40;
D O I
10.1007/s40314-022-01800-x
中图分类号
学科分类号
摘要
In this paper, we initially derive the equivalent fractional integral equation to Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}-Hilfer hybrid fractional differential equations and through it, we prove the existence of a solution in the weighted space. The paper’s primary objective is to obtain estimates on Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}-Hilfer fractional derivative and utilize it to derive the hybrid fractional differential inequalities involving Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}-Hilfer fractional derivative. With the assistance of these fractional differential inequalities, we determine the existence of extremal solutions and comparison theorems.
引用
收藏
相关论文
共 118 条
  • [1] Abbas S(2017)A survey on Hadamard and Hilfer fractional differential equations: analysis and stability Chaos Solitons Fractals 102 47-71
  • [2] Benchohra M(2020)Existence and Ulam stability results of a coupled system for terminal value problems involving Adv Differ Equ 2020 316-218
  • [3] Lazreg JE(2020)-Hilfer fractional operator Results Appl Math 7 207-8
  • [4] Zhou Y(2014)Ulam-Hyers-Mittag-Leffler stability for a Discuss Math Differ Incl Control Optim 34 1-1640
  • [5] Abdo MS(2014)-Hilfer problem with fractional order and infinite delay Electron J Differ Equ 161 1631-481
  • [6] Shah K(2016)An existence theorem for fractional hybrid differential inclusions of Hadamard type Acta Math Sci 36 460-563
  • [7] Panchal SK(2017)Initial-value problems for hybrid Hadamard fractional differential equations Commun Nonlinear Sci Numer Simulat 44 553-152
  • [8] Wahash HA(2013)A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations Appl Math Comput 224 111-486
  • [9] Abdo MS(2018)A Caputo fractional derivative of a function with respect to another function Results Math 73 146-478
  • [10] Panchal SK(1994)Solvability of a fractional hybrid initial value problem with supremum by using measures of noncompactness in Banach algebras Math Student 63 465-424