Topological Entropy and ε-Entropy for Damped Hyperbolic Equations

被引:0
作者
P. Collet
J.-P. Eckmann
机构
[1] Centre de Physique Thérique,
[2] UMR 7644,undefined
[3] CNRS,undefined
[4] Ecole Polytechnique,undefined
[5] F-91128 Palaiseau Cedex,undefined
[6] France,undefined
[7] e-mail: collet@cpht.polytechnique.fr,undefined
[8] Département de Physique Théorique and Section de Mathématiques,undefined
[9] Université de Genève,undefined
[10] CH-1211 Genève 4,undefined
[11] Switzerland,undefined
[12] e-mail: eckmann@mykonos.unige.ch,undefined
来源
Annales Henri Poincaré | 2000年 / 1卷
关键词
Bounded Domain; Unit Length; Hyperbolic Equation; Topological Entropy; Position Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study damped hyperbolic equations on the infinite line. We show that on the global attracting set $ {\cal G} $ the topological entropy per unit length exists in the topology of $ W^{1, \infty} $. We also show that the topological entropy of $ {\cal G} $ exists. These results are shown using two main techniques: Bounds in bounded domains in position space and for large momenta, and a novel submultiplicativity argument in $ W^{1, \infty} $.
引用
收藏
页码:715 / 752
页数:37
相关论文
empty
未找到相关数据