Congruences for 9-regular partitions modulo 3

被引:0
作者
Su-Ping Cui
Nancy S. S. Gu
机构
[1] ChangChun Architecture & Civil Engineering College,Department of Basic Subjects Teaching
[2] Nankai University,Center for Combinatorics, LPMC
来源
The Ramanujan Journal | 2015年 / 38卷
关键词
Partition; Congruence; -regular partition; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
In view of the modular equation of fifth order, we give a simple proof of Keith’s conjecture which is some infinite families of congruences modulo 3 for the 9-regular partition function. Meanwhile, we derive some new congruences modulo 3 for the 9-regular partition function.
引用
收藏
页码:503 / 512
页数:9
相关论文
共 21 条
[1]  
Andrews GE(2010)Arithmetic properties of partitions with even parts distinct Ramanujan J. 23 169-181
[2]  
Hirschhorn MD(2011)On the number of partitions with distinct even parts Discrete Math. 311 940-943
[3]  
Sellers JA(2013)Arithmetic properties of Adv. Appl. Math. 51 507-523
[4]  
Chen SC(2012)-regular partitions Ramanujan J. 27 101-108
[5]  
Cui S-P(1984)Congruences for J. Aust. Math. Soc. (Series A) 36 316-334
[6]  
Gu NSS(1997)-regular partition functions modulo 3 Ramanujan J. 1 25-34
[7]  
Furcy D(1981)A simple proof of Watson’s partition congruences for powers of 7 J. Reine Angew. Math. 326 1-17
[8]  
Penniston D(2010)Divisibility of certain partition functions by powers of primes Bull. Aust. Math. Soc. 81 58-63
[9]  
Garvan FG(2003)A simple proof of the Ramanujan conjecture for powers of 5 Bull. Lond. Math. Soc. 35 41-46
[10]  
Gordon B(2000)Elementary proofs of parity results for 5-regular partitions J. Combin. Theory Ser. A 92 138-157