Periodic solutions for nonautonomous first order delay differential systems via Hamiltonian systems

被引:0
作者
Qiong Meng
机构
[1] Shanxi University,School of Mathematical Science
来源
Advances in Difference Equations | / 2015卷
关键词
first order delay differential equation; nonautonomous; periodic solution; critical point theorems; 34K13; 34K18; 58E50;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of the nontrivial periodic solutions for the nonautonomous first order delay differential equation x′(t)=−[f(t,x(t−1))+f(t,x(t−2))+⋯+f(t,x(t−(2N−1)))]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x'(t)=-[f(t, x(t-1))+f(t, x(t-2))+\cdots+f(t, x(t-(2N-1)))]$\end{document} is investigated, where f∈C(R×R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C({\mathbf{R}}\times{\mathbf{R}}, {\mathbf{R}})$\end{document} is 2N-periodic in t and odd in x, N is a positive integer. We prove several new existence results by some recent critical point theorems.
引用
收藏
相关论文
共 34 条
[1]  
Bartsch T(2006)Deformation theorems on non-metrizable vector spaces and applications to critical point theory Math. Nachr. 279 1267-1288
[2]  
Ding Y(1997)Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity Discrete Contin. Dyn. Syst. 3 251-264
[3]  
Fannio LO(1998)Nontrivial periodic solutions for the asymptotically linear Hamiltonian systems with resonance at infinity J. Differ. Equ. 145 252-273
[4]  
Su JB(2008)Existence and multiplicity of solutions for a non-periodic Schrödinger equation Nonlinear Anal. TMA 69 3671-3678
[5]  
Zhao F(1998)Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems Nonlinear Anal. 31 45-54
[6]  
Zhao L(2005)Multiplicity results for periodic solutions to delay differential equations via critical point theory J. Differ. Equ. 218 15-35
[7]  
Ding Y(2009)Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 793-809
[8]  
Li J(2001)Nontrival periodic solutions of asymptotically linear Hamiltonian systems Electron. J. Differ. Equ. 2001 25-39
[9]  
He X(2006)Multiple periodic solutions of differential delay equations via Hamiltonian systems (I) Nonlinear Anal. 65 40-58
[10]  
Guo Z(2006)Multiple periodic solutions of differential delay equations via Hamiltonian systems (II) Nonlinear Anal. 65 3285-3297