Prime Ideal Factorization in a Number Field via Newton Polygons

被引:0
|
作者
Lhoussain El Fadil
机构
[1] Sidi Mohamed Ben Abdellah University,Faculty of Sciences Dhar El Mahraz
来源
关键词
prime factorization; valuation; φ-expansion; Newton polygon; 11Y05; 11Y40; 11S05;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a number field defined by an irreducible polynomial F(X) ∈ ℤ[X] and ℤK its ring of integers. For every prime integer p, we give sufficient and necessary conditions on F(X) that guarantee the existence of exactly r prime ideals of ℤK lying above p, where F¯(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline F \left( X \right)$$\end{document} factors into powers of r monic irreducible polynomials in Fp[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}\left[ X \right]$$\end{document}. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of ℤK lying above p. We further specify for every prime ideal of ℤK lying above p, the ramification index, the residue degree, and a p-generator.
引用
收藏
页码:529 / 543
页数:14
相关论文
共 50 条
  • [31] A CANONICAL ORDERING OF POLYBENZENES AND POLYMANTANES USING A PRIME NUMBER FACTORIZATION TECHNIQUE
    Elk, Seymour B.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1990, 4 (01) : 55 - 68
  • [32] Parallel Nonnegative Tensor Factorization via Newton Iteration on Matrices
    Flatz, Markus
    Vajtersic, Marian
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 1014 - 1015
  • [33] Efficient Nonnegative Matrix Factorization via projected Newton method
    Gong, Pinghua
    Zhang, Changshui
    PATTERN RECOGNITION, 2012, 45 (09) : 3557 - 3565
  • [34] A kilobit special number field sieve factorization
    Aoki, Kazumaro
    Franke, Jens
    Kleinjung, Thorsten
    Lenstra, Arjen K.
    Osvik, Dag Arne
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2007, 2007, 4833 : 1 - +
  • [35] ON CLASS NUMBER OF AN ABSOLUTELY CYCLIC NUMBER FIELD OF PRIME DEGREE
    ADACHI, N
    PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (08): : 647 - &
  • [36] The number of solutions of congruence of homogeneous quadratic polynomial with prime ideal modulus
    Le, Manh Van
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025,
  • [37] Euclidean ideal classes in Galois number fields of odd prime degree
    Murty, V. Kumar
    Sivaraman, J.
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [38] Euclidean ideal classes in Galois number fields of odd prime degree
    V. Kumar Murty
    J. Sivaraman
    Research in Number Theory, 2022, 8
  • [39] Prime Spectrum of the Ring of Adeles of a Number Field
    Serrano Holgado, Alvaro
    MATHEMATICS, 2022, 10 (19)
  • [40] The number field sieve in the medium prime case
    Joux, Antoine
    Lercier, Reynald
    Smart, Nigel
    Vercauteren, Frederik
    ADVANCES IN CRYPTOLOGY - CRYPTO 2006, PROCEEDINGS, 2006, 4117 : 326 - 344