Prime Ideal Factorization in a Number Field via Newton Polygons

被引:0
|
作者
Lhoussain El Fadil
机构
[1] Sidi Mohamed Ben Abdellah University,Faculty of Sciences Dhar El Mahraz
来源
关键词
prime factorization; valuation; φ-expansion; Newton polygon; 11Y05; 11Y40; 11S05;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a number field defined by an irreducible polynomial F(X) ∈ ℤ[X] and ℤK its ring of integers. For every prime integer p, we give sufficient and necessary conditions on F(X) that guarantee the existence of exactly r prime ideals of ℤK lying above p, where F¯(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline F \left( X \right)$$\end{document} factors into powers of r monic irreducible polynomials in Fp[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}\left[ X \right]$$\end{document}. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of ℤK lying above p. We further specify for every prime ideal of ℤK lying above p, the ramification index, the residue degree, and a p-generator.
引用
收藏
页码:529 / 543
页数:14
相关论文
共 50 条
  • [21] Multiplier ideals of plane curve singularities via Newton polygons
    Perez, Pedro D. Gonzalez
    Villa, Manuel Gonzalez
    Duran, Carlos R. Guzman
    Buces, Miguel Robredo
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1142 - 1162
  • [22] Factoring bivariate polynomials with integer coefficients via Newton polygons
    Crvenkovic, Sinisa
    Pavkov, Ivan
    FILOMAT, 2013, 27 (02) : 215 - 226
  • [23] Prime number factorization and degree of coherence of speckled light beams
    Cao, Tianyu
    Liu, Xin
    Chen, Qian
    Ponomarenko, Sergey a.
    Cai, Yangjian
    Liang, Chunhao
    OPTICS LETTERS, 2024, 49 (18) : 5232 - 5235
  • [24] Parallel Nonnegative Matrix Factorization via Newton Iteration
    Flatz, Markus
    Vajtersic, Marian
    PARALLEL PROCESSING LETTERS, 2016, 26 (03)
  • [25] COVARIANCE FACTORIZATION VIA NEWTON-RAPHSON ITERATION
    ANDERSON, BDO
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (02) : 183 - 187
  • [26] PRIME MATRIX IDEAL YIELDS A SKEW FIELD
    MALCOLMSON, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 18 (OCT): : 221 - 233
  • [27] GENERATION OF THE SYMMETRIC FIELD BY NEWTON POLYNOMIALS IN PRIME CHARACTERISTIC
    Monge, Maurizio
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (02) : 729 - 749
  • [28] A novel access control method using Morton number and prime factorization
    Chang, HKC
    Hwang, JJ
    Liu, HH
    INFORMATION SCIENCES, 2000, 130 (1-4) : 23 - 40
  • [29] THE SMALLEST INERT PRIME IN A CYCLIC NUMBER FIELD OF PRIME DEGREE
    Pollack, Paul
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (01) : 177 - 193
  • [30] Prime number factorization with light beams carrying orbital angular momentum
    Li, Xiaofei
    Liu, Xin
    Wu, Quanying
    Zeng, Jun
    Cai, Yangjian
    Ponomarenko, Sergey A.
    Liang, Chunhao
    APL PHOTONICS, 2024, 9 (04)