Prime Ideal Factorization in a Number Field via Newton Polygons

被引:0
|
作者
Lhoussain El Fadil
机构
[1] Sidi Mohamed Ben Abdellah University,Faculty of Sciences Dhar El Mahraz
来源
关键词
prime factorization; valuation; φ-expansion; Newton polygon; 11Y05; 11Y40; 11S05;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a number field defined by an irreducible polynomial F(X) ∈ ℤ[X] and ℤK its ring of integers. For every prime integer p, we give sufficient and necessary conditions on F(X) that guarantee the existence of exactly r prime ideals of ℤK lying above p, where F¯(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline F \left( X \right)$$\end{document} factors into powers of r monic irreducible polynomials in Fp[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}\left[ X \right]$$\end{document}. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of ℤK lying above p. We further specify for every prime ideal of ℤK lying above p, the ramification index, the residue degree, and a p-generator.
引用
收藏
页码:529 / 543
页数:14
相关论文
共 50 条