Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras

被引:0
作者
Mohammad Hossein Ahmadi Gandomani
Mohammad Javad Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2019年 / 45卷
关键词
Locally compact group; Jordan derivation; Jordan right derivation; Jordan left derivation; -centralizing mapping; Primary 43A15; Secondary 47B47; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate Jordan derivations, Jordan right derivations and Jordan left derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. We show that any Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is a (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and the zero map is the only Jordan left derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}. Then, we prove that the range of a Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is contained into rad(L0∞(G)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {rad}(L_0^\infty ({{\mathcal {G}}})^*)$$\end{document}. Finally, we establish that the product of two Jordan (right) derivations of L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} is always a derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document} and there is no nonzero centralizing Jordan (right) derivation on L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty ({{\mathcal {G}}})^*$$\end{document}.
引用
收藏
页码:189 / 204
页数:15
相关论文
共 32 条
[1]  
Brešar M(1988)Jordan derivations on semiprime rings Proc. Am. Math. Soc. 104 1003-1006
[2]  
Brešar M(1995)Derivations mapping into the radical III J. Funct. Anal. 133 21-29
[3]  
Mathieu M(1990)On left derivations and related mappings Proc. Am. Math. Soc. 110 7-16
[4]  
Brešar M(2010)On Jordan generalized k-derivations of semiprime Bull. Iran. Math. Soc. 36 41-53
[5]  
Vukman J(1975)Jordan derivations on rings Proc. Am. Math. Soc. 53 321-324
[6]  
Chakraborty S(1996)A note on Jordan left derivations Bull. Korean Math. Soc. 33 221-228
[7]  
Paul AC(1957)Jordan derivations of prime rings Proc. Am. Math. Soc. 8 1104-1119
[8]  
Cusack JM(1999)On the structure of minimal left ideals in the largest compactification of a locally compact group J. Lond. Math. Soc. 59 133-152
[9]  
Jun KW(1990)Concerning the second dual of the group algebra of a locally compact group J. Lond. Math. Soc. 41 445-460
[10]  
Kim BD(2011)Compact right multipliers on a Banach algebra related to locally compact semigroups Semigroup Forum 83 205-213