Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space

被引:0
作者
Johannes Broedel
Martin Sprenger
机构
[1] Institut für Theoretische Physik,Institut für Mathematik und Institut für Physik
[2] Eidgenössische Technische Hochschule Zürich,undefined
[3] Humboldt-Universität zu Berlin,undefined
[4] IRIS Adlershof,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Scattering Amplitudes; Extended Supersymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
Starting from the known all-order expressions for the BFKL eigenvalue and impact factor, we establish a formalism allowing the direct calculation of the six-point remainder function in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory in momentum space to — in principle — all orders in perturbation theory. Based upon identities which relate different integrals contributing to the inverse Fourier-Mellin transform recursively, the formalism allows to easily access the full remainder function in multi-Regge kinematics up to 7 loops and up to 10 loops in the fourth logarithmic order. Using the formalism, we prove the all-loop formula for the leading logarithmic approximation proposed by Pennington and investigate the behavior of several newly calculated functions.
引用
收藏
相关论文
共 90 条
[1]  
Lipatov LN(1976)Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories Sov. J. Nucl. Phys. 23 338-undefined
[2]  
Fadin VS(1975)On the Pomeranchuk Singularity in Asymptotically Free Theories Phys. Lett. B 60 50-undefined
[3]  
Kuraev EA(1976)Multi-Reggeon Processes in the Yang-Mills Theory Sov. Phys. JETP 44 443-undefined
[4]  
Lipatov LN(1978)The Pomeranchuk Singularity in Quantum Chromodynamics Sov. J. Nucl. Phys. 28 822-undefined
[5]  
Kuraev EA(1994)Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models JETP Lett. 59 596-undefined
[6]  
Lipatov LN(1995)High-energy QCD as a completely integrable model Phys. Lett. B 342 311-undefined
[7]  
Fadin VS(2005)Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond Phys. Rev. D 72 085001-undefined
[8]  
Balitsky II(2010) = 4 Eur. Phys. J. C 65 587-undefined
[9]  
Lipatov LN(2009)BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes Phys. Rev. D 80 045002-undefined
[10]  
Lipatov LN(2010) = 4 JHEP 03 099-undefined