Dirichlet series expansions of p-adic L-functions

被引:0
|
作者
Heiko Knospe
Lawrence C. Washington
机构
[1] TH Köln - University of Applied Sciences,Faculty 07
[2] University of Maryland,Mathematics Department
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2021年 / 91卷
关键词
p-adic L-Functions; Dirichlet Characters; Dirichlet Series; Euler Factors; Regularized Bernoulli Distributions; p-adic Measures; Primary: 11R23; Secondary: 11R42; 11S80; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
We study p-adic L-functions Lp(s,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p(s,\chi )$$\end{document} for Dirichlet characters χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. We show that Lp(s,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p(s,\chi )$$\end{document} has a Dirichlet series expansion for each regularization parameter c that is prime to p and the conductor of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. The expansion is proved by transforming a known formula for p-adic L-functions and by controlling the limiting behavior. A finite number of Euler factors can be factored off in a natural manner from the p-adic Dirichlet series. We also provide an alternative proof of the expansion using p-adic measures and give an explicit formula for the values of the regularized Bernoulli distribution. The result is particularly simple for c=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=2$$\end{document}, where we obtain a Dirichlet series expansion that is similar to the complex case.
引用
收藏
页码:325 / 334
页数:9
相关论文
共 50 条
  • [1] Dirichlet series expansions of p-adic L-functions
    Knospe, Heiko
    Washington, Lawrence C.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (02): : 325 - 334
  • [2] On the behaviour of p-adic L-functions
    Metsankyla, Tauno
    JOURNAL OF NUMBER THEORY, 2010, 130 (03) : 727 - 737
  • [3] Extremal p-Adic L-Functions
    Molina, Santiago
    MATHEMATICS, 2021, 9 (03) : 1 - 26
  • [4] A p-adic integral for the reciprocal of L-functions
    Gelbart, Stephen
    Miller, Stephen D.
    Panchishkin, Alexei
    Shahidi, Freydoon
    AUTOMORPHIC FORMS AND RELATED GEOMETRY: ASSESSING THE LEGACY OF I.I. PIATETSKI-SHAPIRO, 2014, 614 : 53 - +
  • [5] An l ≠ p-interpolation of genuine p-adic L-functions
    Burungale, Ashay A.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3
  • [6] Upper triangular operators and p-adic L-functions
    Iván Blanco-Chacón
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (2) : 87 - 99
  • [7] p-ADIC L-FUNCTIONS AND THE GEOMETRY OF HIDA FAMILIES
    KRAMER-MILLER, Joe
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (02) : 727 - 770
  • [8] Upper Triangular Operators and p-Adic L-Functions
    Blanco-Chacon, Ivan
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2011, 3 (02) : 87 - 99
  • [9] p-Adic automorphic L-functions on GL(3)
    Geroldinger, Angelika
    RAMANUJAN JOURNAL, 2015, 38 (03): : 641 - 682
  • [10] ON THE LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS MODULO p
    Angles, Bruno
    Ranieri, Gabriele
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) : 1831 - 1855