Asymptotic entropy of the ranges of random walks on discrete groups

被引:0
|
作者
Xinxing Chen
Jiansheng Xie
Minzhi Zhao
机构
[1] Shanghai Jiaotong University,School of Mathematical Sciences
[2] Fudan University,Shanghai Center of Mathematics
[3] Fudan University,School of Mathematical Sciences
[4] Zhejiang University,School of Mathematical Sciences
来源
Science China Mathematics | 2020年 / 63卷
关键词
random walk; entropy; range; recurrent; 60G50; 60J10; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by Benjamini et al. (2010) and Windisch (2010), we consider the entropy of the random walk ranges Rn formed by the first n steps of a random walk S on a discrete group. In this setting, we show the existence of hR:=limn→∞H(Rn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_R :={\lim}_{n\rightarrow\infty}\frac{H(R_n)}{n}$$\end{document} called the asymptotic entropy of the ranges. A sample version of the above statement in the sense of Shannon (1948) is also proved. This answers a question raised by Windisch (2010). We also present a systematic characterization of the vanishing asymptotic entropy of the ranges. Particularly, we show that hR = 0 if and only if the random walk either is recurrent or escapes to negative infinity without left jump. By introducing the weighted digraphs Гn formed by the underlying random walk, we can characterize the recurrence property of S as the vanishing property of the quantity limn→∞H(Γn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim}_{n\rightarrow\infty}\frac{H(\Gamma_n)}{n}$$\end{document} which is an analogue of hR.
引用
收藏
页码:1153 / 1168
页数:15
相关论文
共 50 条
  • [21] RANDOM WALKS IN COMPACT GROUPS
    Varju, Peter Pal
    DOCUMENTA MATHEMATICA, 2013, 18 : 1137 - 1175
  • [22] Entropy inequalities for random walks and permutations
    Bristiel, Alexandre
    Caputo, Pietro
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 54 - 81
  • [23] Analyticity of the entropy for some random walks
    Ledrappier, Francois
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 317 - 333
  • [24] Enumeration and random random walks on finite groups
    Dou, C
    Hildebrand, M
    ANNALS OF PROBABILITY, 1996, 24 (02) : 987 - 1000
  • [25] Asymptotic capacity of the range of random walks on free products of graphs
    Gilch, Lorenz A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [26] Discrete random walks on the group Sol
    Jérémie Brieussel
    Ryokichi Tanaka
    Israel Journal of Mathematics, 2015, 208 : 291 - 321
  • [27] DISCRETE RANDOM WALKS ON THE GROUP SOL
    Brieussel, Jeremie
    Tanaka, Ryokichi
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 208 (01) : 291 - 321
  • [28] Properties of random walks on discrete groups: Time regularity and off-diagonal estimates
    Dungey, Nick
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (05): : 359 - 381
  • [29] Asymptotic direction of random walks in Dirichlet environment
    Tournier, Laurent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 716 - 726
  • [30] Random Walks on Planar Crystallographic Groups
    V. G. Zhuravlev
    A. A. Yudin
    Journal of Mathematical Sciences, 2003, 118 (1) : 4852 - 4860