共 50 条
Asymptotic entropy of the ranges of random walks on discrete groups
被引:0
|作者:
Xinxing Chen
Jiansheng Xie
Minzhi Zhao
机构:
[1] Shanghai Jiaotong University,School of Mathematical Sciences
[2] Fudan University,Shanghai Center of Mathematics
[3] Fudan University,School of Mathematical Sciences
[4] Zhejiang University,School of Mathematical Sciences
来源:
Science China Mathematics
|
2020年
/
63卷
关键词:
random walk;
entropy;
range;
recurrent;
60G50;
60J10;
05C25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Inspired by Benjamini et al. (2010) and Windisch (2010), we consider the entropy of the random walk ranges Rn formed by the first n steps of a random walk S on a discrete group. In this setting, we show the existence of hR:=limn→∞H(Rn)n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h_R :={\lim}_{n\rightarrow\infty}\frac{H(R_n)}{n}$$\end{document} called the asymptotic entropy of the ranges. A sample version of the above statement in the sense of Shannon (1948) is also proved. This answers a question raised by Windisch (2010). We also present a systematic characterization of the vanishing asymptotic entropy of the ranges. Particularly, we show that hR = 0 if and only if the random walk either is recurrent or escapes to negative infinity without left jump. By introducing the weighted digraphs Гn formed by the underlying random walk, we can characterize the recurrence property of S as the vanishing property of the quantity limn→∞H(Γn)n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lim}_{n\rightarrow\infty}\frac{H(\Gamma_n)}{n}$$\end{document} which is an analogue of hR.
引用
收藏
页码:1153 / 1168
页数:15
相关论文