共 50 条
- [41] Uniqueness of integrable solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nabla \zeta=G \zeta, \zeta|_\Gamma = 0}$$\end{document} for integrable tensor coefficients G and applications to elasticity Zeitschrift für angewandte Mathematik und Physik, 2013, 64 (6) : 1679 - 1688
- [42] On the Novel Ulam–Hyers Stability for a Class of Nonlinear ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer Fractional Differential Equation with Time-Varying Delays Mediterranean Journal of Mathematics, 2019, 16 (5)
- [43] On the existence and uniqueness of a generalized solution of the Protter problem for (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+1)$\end{document}-D Keldysh-type equations Boundary Value Problems, 2017 (1)
- [44] Regular solution for the compressible Landau–Lifshitz–Bloch equation in a bounded domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document} Journal of Elliptic and Parabolic Equations, 2022, 8 (1) : 419 - 441
- [45] A Note on the Value Distribution of f′(z)-afk(z)-b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime }(z)-af^k(z)- b$$\end{document} Computational Methods and Function Theory, 2020, 20 (1) : 85 - 94
- [46] On the Value Distribution of fnf(k)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{f}}^{{\varvec{n}}} {\varvec{f}}^{({\varvec{k}})}-\mathbf 1 $$\end{document} Results in Mathematics, 2018, 73 (3)
- [47] On the uniqueness of mild solutions to the time-fractional Navier–Stokes equations in LNRNN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{N} \left( \mathbb {R} ^{N}\right) ^{N}$$\end{document} Computational and Applied Mathematics, 2023, 42 (1)
- [48] Global Well-Posedness for Navier–Stokes Equations with Small Initial Value in Bn,∞0(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B^{0}_{n,\infty}(\Omega)}$$\end{document} Journal of Mathematical Fluid Mechanics, 2016, 18 (1) : 103 - 131
- [49] Remarks on the uniqueness of weak solution for the 3D viscous magneto-hydrodynamics equations in B∞,∞1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B^{1}_{\infty,\infty}}$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2016, 67 (1)
- [50] A remark on the uniqueness of Kozono–Nakao’s mild L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^3$$\end{document}-solutions on the whole time axis to the Navier–Stokes equations in unbounded domains Partial Differential Equations and Applications, 2021, 2 (5):