The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case λ0(g0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0(g_0)=0$$\end{document}

被引:0
作者
Rugang Ye
机构
[1] University of California,Department of Mathematics
关键词
Uniform; Logarithmic Sobolev inequality; Sobolev inequality; Ricci flow; Eigenvalue; 53C44; 35K55;
D O I
10.1007/s40304-015-0044-3
中图分类号
学科分类号
摘要
A uniform logarithmic Sobolev inequality, a uniform Sobolev inequality and a uniform κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-noncollapsing estimate along the Ricci flow are established in the situation that a certain smallest eigenvalue for the initial metric is zero.
引用
收藏
页码:363 / 368
页数:5
相关论文
共 4 条
[1]  
Guenther C(2002)Stability of the Ricci flow at Ricci flat metrics Commun. Anal. Geom. 10 741-777
[2]  
Isenberg J(1993)Ricci flow, Einstein metrics and space forms Trans. Am. Math. Soc. 338 871-895
[3]  
Knopf D(undefined)undefined undefined undefined undefined-undefined
[4]  
Ye R(undefined)undefined undefined undefined undefined-undefined