Riesz* homomorphisms on pre-Riesz spaces consisting of continuous functions

被引:0
作者
Hendrik van Imhoff
机构
[1] University of Leiden,
来源
Positivity | 2018年 / 22卷
关键词
Partially ordered vector space; Order dense subspace; Pre-Riesz space; Riesz* homomorphism; Weighted composition operator; Automorphism group; Smooth manifold; Sobolev space; Primary 46A40; Secondary 06F20;
D O I
暂无
中图分类号
学科分类号
摘要
In the theory of operators on a Riesz space (vector lattice), an important result states that the Riesz homomorphisms (lattice homomorphisms) on C(X) are exactly the weighted composition operators. We extend this result to Riesz* homomorphisms on order dense subspaces of C(X). On those subspace we consider and compare various classes of operators that extend the notion of a Riesz homomorphism. Furthermore, using the weighted composition structure of Riesz* homomorphisms we obtain several results concerning bijective Riesz* homomorphisms. In particular, we characterize the automorphism group for order dense subspaces of C(X). Lastly, we develop a similar theory for Riesz* homomorphisms on subspace of C0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(X)$$\end{document}, for a locally compact Hausdorff space X, and apply it to smooth manifolds and Sobolev spaces.
引用
收藏
页码:425 / 447
页数:22
相关论文
共 10 条
[1]  
Biegert M(2010)Lattice homomorphisms between Sobolev space Positivity 14 353-371
[2]  
Buskes G(1993)The vector lattice cover of certain partially ordered groups J. Aust. Math. Soc. A 54 352-367
[3]  
van Rooij A(2008)Bands in pervasive pre-Riesz spaces Oper. Matrices 2 177-191
[4]  
van Gaans O(2008)Ideals and bands in pre-Riesz spaces Positivity 12 591-611
[5]  
Kalauch A(2014)Riesz completions, functional representations, and anti-lattices Positivity 18 201-218
[6]  
van Gaans O(undefined)undefined undefined undefined undefined-undefined
[7]  
Kalauch A(undefined)undefined undefined undefined undefined-undefined
[8]  
van Gaans O(undefined)undefined undefined undefined undefined-undefined
[9]  
Lemmens B(undefined)undefined undefined undefined undefined-undefined
[10]  
Kalauch A(undefined)undefined undefined undefined undefined-undefined