Solutions of elliptic problems with nonlinearities of linear growth

被引:0
作者
Zhaoli Liu
Jiabao Su
Zhi-Qiang Wang
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] Fujian Normal University,School of Mathematics and Computer Sciences
[3] Utah State University,Department of Mathematics and Statistics
来源
Calculus of Variations and Partial Differential Equations | 2009年 / 35卷
关键词
35J55; 35J65; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study existence of nontrivial solutions to the elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u = f(x, u) \ \ {\rm in} \ \Omega, \quad \ u=0 \ \ {\rm on} \ \ \partial \Omega$$\end{document}and to the elliptic system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u = \nabla_{u}V(x, u) \ \ {\rm in} \ \Omega, \quad \ u=0 \ \ {\rm on} \ \ \partial \Omega,$$\end{document}where Ω is a bounded domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R^{N}}$$\end{document} with smooth boundary ∂Ω, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in C^{1}(\bar\Omega\times\mathbb{R}, \mathbb{R})}$$\end{document}, f (x, 0) = 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V\in C^{2}(\bar\Omega\times\mathbb{R}^{m}, \mathbb{R})}$$\end{document} with m ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nabla_{u} V(x,0)=0}$$\end{document}. Nontrivial solutions are obtained in the case in which the nonlinearities have linear growth. That is, for some c > 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|f(x,u)|\leqslant c|u|}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in\Omega}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\in\mathbb R}$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-cI_{m}\,\leqslant\,\nabla_{u}^{2}V(x,u)\,\leqslant\,cI_{m}}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in\Omega}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\in\mathbb R^{m}}$$\end{document}, where Im is the m × m identity matrix. In sharp contrast to the existing results in the literature, we do not make any assumptions at infinity on the asymptotic behaviors of the nonlinearity f and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nabla_{u} V}$$\end{document}.
引用
收藏
页码:463 / 480
页数:17
相关论文
共 56 条
[1]  
Abbondandolo A.(2000)Morse theory for asymptotically linear Hamiltonian systems Nonlinear Anal. 39 997-1049
[2]  
Ahmad S.(1976)Elementary critical point theory and perturbations of elliptic boundary value problems at resonance Indiana Univ. Math. J. 25 933-944
[3]  
Lazer A.(1980)Nontrivial solutions for a class of nonresonance problem and applications to nonlinear differential equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7 539-603
[4]  
Paul J.(1980)Periodic solutions of asymptotically linear Hamiltonian systems Manuscripta Math. 32 149-189
[5]  
Amann H.(1981)Multiple periodic solutions for a class of nonlinear autonomouswave equations Houston J. Math. 7 147-174
[6]  
Zehnder E.(1995)Nontrivial solutions for a strongly resonant problem Differ. Integr. Equ. 8 151-159
[7]  
Amann H.(1983)Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity Nonlinear Anal. 7 981-1012
[8]  
Zehnder E.(1994)Periodic solutions of asymptotically linear dynamical systems NoDEA Nonlinear Differ. Equ. Appl. 1 267-280
[9]  
Amann H.(1989)On the existence of a nontrivial solution to nonlinear problems at resonance Nonlinear Anal. 13 151-163
[10]  
Zehnder E.(1981)Solutions of asymptotically linear operator equations via Morse theory Commun. Pure Appl. Math. 34 693-712