Distortion theorems for univalent meromorphic functions on an annulus

被引:0
作者
V. N. Dubinin
E. G. Prilepkina
机构
[1] Institute of Applied Mathematics,
来源
Siberian Mathematical Journal | 2010年 / 51卷
关键词
meromorphic function; univalent function; distortion theorem; Schwarzian derivative; doubly-connected domain; annulus; condenser capacity; dissymmetrization; Green’s function; Robin function;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the capacity and symmetrization methods to distortion theorems for analytic functions in an annulus. We show that the classical Teichmüller estimate for the capacity of a doubly-connected domain yields a series of the already known and new inequalities for univalent functions. In particular, we supplement the results of Grötzsch, Duren, and Huckemann. Using the dissymmetrization of condensers we establish sharp estimates for local distortion and the distortion of level curves in n ≥ 2 symmetric directions. In terms of Robin functions we give an analog of the Nehari inequality: some general distortion theorem for several points taking into account the boundary behavior of the function and describing the cases of equalities. As a corollary we give analogs of some inequalities of Solynin, Pommerenke, and Vasil’ev that were obtained previously for univalent and bounded functions in a disk. We prove a distortion theorem that involves the Schwarzian derivatives at symmetric points on the unit circle.
引用
收藏
页码:229 / 243
页数:14
相关论文
共 24 条
  • [1] Dubinin V. N.(2005)Generalized condensers and the asymptotics of their capacities under degeneration of some plates J. Math. Sci. (New York) 129 3835-3842
  • [2] Dubinin V. N.(1994)Symmetrization in the geometric theory of functions of a complex variable Uspekhi Mat. Nauk 49 3-76
  • [3] Dubinin V. N.(1999)The Teichmüller extremal problem and distortion theorems in the theory of univalent functions Siberian Math. J. 40 258-261
  • [4] Kostyuchenko E. V.(1938)Untersuchungen über konforme und quasikonforme Abbildung Deutsch. Math. 3 621-678
  • [5] Teichmüller O.(1928)Über einige Extremalprobleme der konformer Abbildung Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 80 367-376
  • [6] Grötzsch H.(1963)Distortion in certain conformal mappings of an annulus Michigan Math. J. 10 431-441
  • [7] Duren P. L.(1967)Extremal elements in certain classes of conformal mappings of an annulus Acta Math. 118 193-221
  • [8] Huckemann F.(2003)Extremal problems in the function theory associated with the J. Math. Sci. (New York) 118 4778-4794
  • [9] Dubinin V. N.(1999)-fold symmetry J. Math. Sci. (New York) 95 2209-2220
  • [10] Kostyuchenko E. V.(2006)The asymptotics of module of a degenerating condenser and some of its applications J. Math. Sci. (New York) 133 1634-1647