Hsa_circ_0010729 is Involved in Oxygen–Glucose Deprivation/Reoxygenation-Induced Human Microvascular Endothelial Cell Deprivation by Targeting miR-665/ING5

被引:0
|
作者
Xin Ouyang
Guangbin Shi
Shaomin Wang
Li Chen
Jinyan Xu
Donglin Xie
机构
[1] Ningbo University,Neurology Department, The Affiliated Hospital of Medical School
[2] Medical Center Lihuili Hospital Ning Bo,Neurology Department
[3] Ningbo Yinzhou NO.2 Hospital,Department of Urology and Oncology
来源
Biochemical Genetics | 2022年 / 60卷
关键词
hsa_circ_0010729; miR-665; ING5; Ischemic stroke;
D O I
暂无
中图分类号
学科分类号
摘要
Ischemic stroke is a disease with high mortality. Circular RNA_0010729 (hsa_circ_0010729) has been reported to be involved in ischemic heart disease. However, it is not clear whether hsa_circ_0010729 is involved in the regulation of ischemic stroke. In this study, we used oxygen–glucose deprivation/reoxygenation (OGD/R) to stimulate human brain microvascular endothelial cells (HBMECs) model to investigate the potential role of hsa_circ_0010729 in stroke in vitro. The expression levels of hsa_circ_0010729, miR-665, and ING5 in ischemic stroke were detected by quantitative real-time polymerase chain reaction (qRT-PCR). HBMECs proliferation was detected by CCK-8. Cell apoptosis was detected by flow cytometry. The levels of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the related protein expression. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to examine the target relationship between miR-665 and hsa_circ_0010729 or ING5. Compared with the control group, hsa_circ_0010729 and ING5 were highly expressed in OGD/R-induced HBMECs, while miR-665 was lowly expressed. Hsa_circ_0010729 silencing promoted OGD/R-induced cell proliferation and inhibited apoptosis. However, the effect of hsa_circ_0010729 down-regulation on OGD/R-induced cell was partially restored after co-transfection with miR-665 inhibitor. Overexpression of miR-665 can promote the proliferation and inhibit apoptosis of OGD/R-induced HBMECs by inhibiting ING5 expression. In OGD/R-induced HBMECs, hsa_circ_0010729 silencing decreased ING5 expression by upregulating miR-665. Hsa_circ_0010729 regulated miR-665/ING5 axis in OGD/R-induced HBMECs. Therefore, hsa_circ_0010729 may be a new therapeutic target for ischemic stroke.
引用
收藏
页码:2455 / 2470
页数:15
相关论文
共 50 条
  • [1] Hsa_circ_0010729 is Involved in Oxygen-Glucose Deprivation/Reoxygenation-Induced Human Microvascular Endothelial Cell Deprivation by Targeting miR-665/ING5
    Ouyang, Xin
    Shi, Guangbin
    Wang, Shaomin
    Chen, Li
    Xu, Jinyan
    Xie, Donglin
    BIOCHEMICAL GENETICS, 2022, 60 (06) : 2455 - 2470
  • [2] Upregulation of miR-376c-3p alleviates oxygen–glucose deprivation-induced cell injury by targeting ING5
    Heng Zhang
    Jie Zhou
    Mingxia Zhang
    Yanjie Yi
    Bing He
    Cellular & Molecular Biology Letters, 2019, 24
  • [3] Upregulation of miR-376c-3p alleviates oxygen-glucose deprivation-induced cell injury by targeting ING5
    Zhang, Heng
    Zhou, Jie
    Zhang, Mingxia
    Yi, Yanjie
    He, Bing
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2019, 24 (01)
  • [4] Silencing of circular RNA ANRIL attenuates oxygen–glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622
    Su Jiang
    Gaonian Zhao
    Jun Lu
    Min Jiang
    Zhenggang Wu
    Yujing Huang
    Jing Huang
    Jinghua Shi
    Jing Jin
    Xinxuan Xu
    Xuehua Pu
    Biological Research, 53
  • [5] Zhongfenggao Protects Brain Microvascular Endothelial Cells from Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Angiogenesis
    Huang, Shenghui
    Gong, Ting
    Zhang, Tengfei
    Wang, Xinfeng
    Cheng, Qianqian
    Li, Yanyi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2019, 42 (02) : 222 - 230
  • [6] Circ_0006768 upregulation attenuates oxygen–glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition
    Jing Li
    Jiguang Wang
    Zhi Wang
    Metabolic Brain Disease, 2021, 36 : 2521 - 2534
  • [7] Silencing of circular RNA ANRIL attenuates oxygen-glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622
    Jiang, Su
    Zhao, Gaonian
    Lu, Jun
    Jiang, Min
    Wu, Zhenggang
    Huang, Yujing
    Huang, Jing
    Shi, Jinghua
    Jin, Jing
    Xu, Xinxuan
    Pu, Xuehua
    BIOLOGICAL RESEARCH, 2020, 53 (01)
  • [8] Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition
    Li, Jing
    Wang, Jiguang
    Wang, Zhi
    METABOLIC BRAIN DISEASE, 2021, 36 (08) : 2521 - 2534
  • [9] Circ_0059662 exerts a positive role in oxygen–glucose deprivation/reoxygenation-induced SK-N-SH cell injury
    Yang An
    Dan Xu
    Lei Yuan
    Ying Wen
    Experimental Brain Research, 2023, 241 : 2705 - 2714
  • [10] Autophagy Inhibition by ATG3 Knockdown Remits Oxygen–Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells
    Zhaolong Peng
    Daofei Ji
    Lukuan Qiao
    Yuedong Chen
    Hongjuan Huang
    Neurochemical Research, 2021, 46 : 3200 - 3212